DSC를 이용한 토목섬유가 포함된 경계면의 변형율 연화 모델 개발

Development of Strain-softening Model for Geosynthetic-involved Interface Using Disturbed State Concept

  • Woo, Seo-Min (School of Civil, Urban & Geosystem Engrg., Seoul National Univ.) ;
  • Park, Jun-Boum (School of Civil, Urban & Geosystem Engrg., Seoul National Univ.) ;
  • Park, Inn-Joon (Dept. of Hanseo Univ.)
  • 발행 : 2003.10.01

초록

본 연구에서는 DSC를 이용한 구성방정식을 이용하여 토목섬유 사이의 접촉전단 응력과 변위와의 관계를 모델링하였다. DSC 모델은 두 개의 기준 상태, 즉 상대적으로 손상되지 않은 RI 상태와 완전히 파괴된 FA 상태와 한가지의 교란 함수로 구성된다. 본 모델은 통합된 모델로서, RI 상태를 탄성-완전 소성 모델, 계층적 단일 항복곡면 (HiSS) 모델 등 다양한 모델을 이용하여 모사할 수 있다. 한편 본 모델은 탄성과 소성 변위를 동시에 고려할 수 있다는 장점을 가지고 있다. 4가지의 대형 직접전단 시험으로부터 측정된 자료와 측정자료로부터 도출된 모델 변수를 이용하여 재해석한 결과를 서로 비교하여, 둘 사이의 비교 결과가 상당히 일치함을 발견하였으며, 특히 표면이 매끄러운 지오멤브레인의 접촉면에서는 매우 상관관계를 보였다. 비록 표면이 거친 지오멤브레인이 포함된 접촉면에서는 예측 최대 전단강도가 실험결과와 약간의 차이를 보이기는 하였지만, 전체적으로 본 모델이 최대 전단응력이 나타나는 변위점과 대변형에서의 전단강도를 상당히 정확히 예측하였으며, 이를 통해 본 모델이 변형율 연화 현상을 보이는 접촉면 전단거동의 모델링에 유용함을 확인하였다.

In this study, a constitutive model called the disturbed state concept (DSC) was modified to be applied to the interface shear stress-displacement relationship between geosynthetics. The DSC model is comprised of two reference states, namely the relative intact (RI) and the fully adjusted (FA) state, and one function, namely the disturbance function. This model is a unified approach and can allow for various models as an RI state such as elastic-perfectly plastic model, hierarchical model, and so on. In addition, by using this model, the elastic and plastic displacements can be considered simultaneously. Comparisons between the measured data and predicted results through the parameters determined from four sets of large direct shear tests showed good agreements with each other, especially for the smooth geomembrane-involved interface. Although there are slight differences at peak shear strength for textured geomembrane-involved interface, this model can still be useful to predict the position of displacement at peak strength and the large displacement (or residual) shear strength.

키워드

참고문헌

  1. International Journal for Numerical and Analytical Methods in Geomechanics v.18 Zero thickness interface elements-numerical stability and application Day,R.A.;Potts,D.M. https://doi.org/10.1002/nag.1610181003
  2. Mechanics of materials and interfacse - The disturbed state concept Desai,C.S.
  3. International Journal for Numerical and Analytical Methods in Geomechanics v.22 Fundamental yet simplified model for liquefaction instability Desai,C.S.;Park,I.J.;Shao.C. https://doi.org/10.1002/(SICI)1096-9853(199809)22:9<721::AID-NAG942>3.0.CO;2-F
  4. International Journal for Numerical and Analytical Methods in Geomechanics v.8 Thin-layer element for interfaces and joints Desai,C.S.;Zaman,M.M.;Lightner,J.G.;Siriwardane,H.J. https://doi.org/10.1002/nag.1610080103
  5. Journal of Geotechnical and Geoenvironmental Engineering v.127 no.10 Constitutive behavior of geosynthetic interfaces Esterhuizen,J.J.B.;Filz,G.M.;Duncan,J.M. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(834)
  6. Journal of Geotechnical and Geoenvironmentatl Engineering v.127 no.10 Progressive failure of lined waste impoundments Filz,G.M.;Esterhuizen,J.J.B.;Ducan,J.M. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(841)
  7. Journal of Engineering Mechanics v.104 Finite element analysis of contact problems Herrmann,L.R.
  8. Geotextiles and Geomembranes v.16 Shear strength properties of geomembrane / geotextile interfaces Jones,D.R.V.;Dixon,N. https://doi.org/10.1016/S0266-1144(97)10022-X
  9. Report submitted to National Science Foundation Constitutive modeling of joints and interfaces by using disturbed state concept Ma,Y.;Desai,C.S.
  10. Journal of Geotechnical and Geoemvironmental Engineering v.126 no.9 Cyclic behavior and liquefaction of sand using disturbed state concept Park,I.J.;Desai,C.S. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:9(834)
  11. Tunnel and Under-ground, Journal of Korea Society of Rock Mechanics v.8 no.200-208 Disturbed state modeling for joints of rock (thoery and implementation) Park,I.J.;Jeon,S.W.
  12. Ph.D. Thesis, Dept. of Civil Engineering and engineering mechanics, The University of Arizona Testing and constitutive modelling of saturated interfaces in dynamic soil-structure interaction Rigby,D.B.
  13. Journal of the Korean Geotechnical Society v.18 no.1 The evaluation of interface shear etrength between geomembrane and geotextile Seo,M.W.;Park,J.B.;Kim,O.Y.
  14. Journal of Civil Engineering v.7 no.1 Modeling of interface shear behavior between geosynthetics Seo,M.W.;Park,J.B.;Park,I.J.;Chung,M.K.
  15. Journal of Geotechnical Engineering v.122 no.3 HDPE geomembrane/geotextile interface shear strength Stark,M.W.;Willisamson,T.A.;Eid,H.T. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:3(197)
  16. Journal of Geotechnical and Geoenvironmental Engineering v.127 no.6 Shear strength of HDPE geomembrane /geosynthetic clay liner Triplett,E.J.;Fox,P.J. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:6(543)
  17. Canadian Geotechnical Journal v.39 Soil structure interaction analysis: modeling the interface Zeghal,M.;Edil,T.B. https://doi.org/10.1139/t02-016