Evolutionary course of CsRn1 long-terminal-repeat retrotransposon and its heterogeneous integrations into the genome of the liver fluke, Clonorchis sinensis

  • Bae, Young-An (Department of Molecular Parasitology and Center for Molecular Medicine, Sungkyunkwan University School of Medicine and Samsung Biomedical Research Institute) ;
  • Kong, Yoon (Department of Molecular Parasitology and Center for Molecular Medicine, Sungkyunkwan University School of Medicine and Samsung Biomedical Research Institute)
  • Published : 2003.12.01

Abstract

The evolutionary course of the CsRn1 long-terminal-repeat (LTR) retrotransposon was predicted by conducting a phylogenetic analysis with its paralog LTR sequences. Based on the clustering patterns in the phylogenetic tree, multiple CsRn1 copies could be grouped into four subsets, which were shown to have different integration times. Their differential sequence divergences and heterogeneous integration patterns strongly suggested that these subsets appeared sequentially in the genome of C. sinensis. Members of recently expanding subset showed the lowest level of divergence in their L TR and reverse transcriptase gene sequences. They were also shown to be highly polymorphic among individual genomes of the trematode. The CsRn1 element exhibited a preference for repetitive, agenic chromosomal regions in terms of selecting integration targets. Our results suggested that CsRn1 might induce a considerable degree of intergenomic variation and, thereby, have influenced the evolution of the C. sinensis genome.

Keywords

References

  1. Bae YA, Moon SY, Kong Y, Cho SY, Rhyu MG (2001) CsRn1, a noble active retrotransposon in a parasitic trematode, Clonorchis sinensis, discloses a new phylogenetic clade of Ty3/gypsy-like LTR retrotransposons. Mol Biol Evol 18:1474-1483.
  2. Biessmann H, Kasravi B, Jakes K, Bui T, Ikenaga K, Mason JM (1993) The genomic organization of Het-A retroposons in Drosophila melanogaster. Chromosoma 102:297-305.
  3. Boeke JD, Garfinkel DJ, Styles CA, Fink GR (1985) Tyelements transpose through an RNA intermediate. Cell 40: 491-500.
  4. Boeke JD, Stoye JP (1997) Retrotransposons, endogenous retroviruses, and the evolution of retroelements. In Retroviruses, Coffin JM, Hughes SH, Varmus HE (eds.). p343-435, Cold Spring Harbor Laboratory Press, New York, USA.
  5. Boissinot S, Chevret P, Furano AV (2000) L1(LINE-1) retrotransposon evolution and amplification in recent human history. Mol Biol Evol 17: 915-928.
  6. Charlesworth B, Charlesworth D (1995) Transposable elements in inbreeding and outbreeding populations. Genetics 140: 415-417.
  7. Charlesworth B, Jarne P, Assimacopoulos S (1994) The distribution of transposable elements within and between chromosomes in a population of Drosophila melanogaster. III. Element abundances in heterochromatin. Genet Res 64: 183-197.
  8. Chun J (2001) PHYDIT. Version 3.1 (available at http://plaza.snu.ac.kr/-jchun/phydit/).
  9. Clough JE, Foster JA, Barnett M, Wichman HA (1996) Computer simulation of transposable element evolution: random template and strict master models. J Mol Evol 42: 52-58.
  10. Dangel AW, Baker BJ, Mendoza AR, Yu CY(1995) Complement component of C4 gene intron 9 as a phylogenetic marker for primates: long terminal repeats of the endogenous retrovirus ERV-K (C4) are a molecular clock of evolution. Immunogenetics 42: 41-52.
  11. Finnegan DJ (1989) Eukaryotic transposable elements and genome evolution. Trends Genet 5: 103-107.
  12. Ganguly R, Swanson KD, Ray K, Krishnan R (1992) A Bam HI repeat is predominantly associated with the degenerating neo-Y chromosome of Drosophila miranda but absent in the Drosophila melanogaster genome. Proc Natl Acad Sci USA 89: 1340-1344.
  13. Junakovic N, Terrinoni A, Di Franco C, Vieira C, Loevenbruck C (1998) Accumulation of transposable elements in the heterochromatin and on the Y chromosome of Drosophila simulans and Drosophila melanogaster. J Mol Evol 46: 661-668.
  14. Li WH, Gu Z, Wang H, Nekrutenko A (2001) Evolutionary analyses of the human genome. Nature 409: 847-849.
  15. Lonnig WE, Saedler H (1997) Plant transposons: contributors to evolution? Gene 205: 245-253.
  16. Malik HS, Burke WD, Eickbush TH (1999) The age and evolution of non-LTR retrotransposable elements. Mol Biol Evol 16: 793-805.
  17. Malik HS, Eickbush TH (1999) Modular evolution of the integrase domain in the Ty3/Gypsy class of LTR retrotransposons. J Virol 73: 5186-5190.
  18. Malik HS, Eickbush TH (2001) Phylogenetic analysis of ribonuclease H domains suggests a late, chimeric origin of LTR retrotransposable elements and retroviruses. Genome Res 11: 1187-1197.
  19. Medstrand P, Mager DL (1998) Human-specific integrations of the HERV-K endogenous retrovirus family. J Virol 72: 9782-9787.
  20. Nikaido M, Rooney AP, Okada N (1999) Phylogenetic relationships among cetartiodactyls based on insertions of short and long interspersed elements: hippopotamuses are the closest extant relatives of whales. Proc Natl Acad Sci USA 96: 10261-10266.
  21. Petrov DA, Lozovskaya ER, Hartl DL (1996) High intrinsic rate of DNA loss in Drosophila. Nature 384: 346-349.
  22. Petrov DA, Sangster TA, Johnston JS, Hartl DL, Shaw KL (2000) Evidence for DNA loss as a determinant of genomic size. Science 287: 1060-1062.
  23. Pouteau S, Huttner E, Grandbastien MA, Caboche M (1991) Specific expression of the tobacco Tnt1 retrotransposon in protoblasts. EMBO J 10: 1911-1918.
  24. SanMiguel P, Tikhonov A, Jin YK, et al. (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274: 765-768.
  25. Steinemann M, Steinemann S (1997) The enigma of Y chromosome degeneration: TRAM, a novel retrotransposon is preferentially located on the Neo-Y chromosome of Drosophila miranda. Genetics 145: 261-266.
  26. Varmus H, Brown P (1989) Retroviruses. In Mobile DNA, Berg DE, Howe MH (eds.). p53-108, American Society of Microbiology, Washington DC, USA.
  27. Whitelaw E, Martin DI (2001) Retrotransposons as epigenetic mediators of phenotypic variation in mammals. Nat Genet 27: 361-365.
  28. Xiong Y, Eickbush TH (1990) Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J 9: 3353-3362.