Divergent long-terminal-repeat retrotransposon families in the genome of Paragonimus westermani

  • Bae, Young-An (Department of Molecular Parasitology and Center for Molecular Medicine, Sungkyunkwan University School of Medicine and Samsung Biomedical Research Institute) ;
  • Kong, Yoon (Department of Molecular Parasitology and Center for Molecular Medicine, Sungkyunkwan University School of Medicine and Samsung Biomedical Research Institute)
  • Published : 2003.12.01

Abstract

To gain information on retrotransposons in the genome of Paragonimus westermani, PCR was carried out with degenerate primers, specific to protease and reverse transcriptase (rt) genes of long-terminal-repeat (LTR) retrotransposons. The PCR products were cloned and sequenced, after which 12 different retrotransposon-related sequences were isolated from the trematode genome. These showed various degrees of identity to the polyprotein of divergent retrotransposon families. A phylogenetic analysis demonstrated that these sequences could be classified into three different families of LTR retrotransposons, namely, Xena, Bel, and Gypsy families. Of these, two mRNA transcripts were detected by reverse transcriptase-PCR, showing that these two elements preserved their mobile activities. The genomic distributions of these two sequences were found to be highly repetitive. These results suggest that there are diverse retrotransposons including the ancient Xena family in the genome of P. westermani, which may have been involved in the evolution of the host genome.

Keywords

References

  1. Abe H, Kanehara M, Terada T, et al. (1998) Identification of novel random amplified polymorphic DNAs (RAPDs) on the W chromosome of the domesticated silkworm, Bombyx mori, and the wild silkworm, B. mandarina, and their retrotransposable element-related nucleotide sequences. Genes Genet Syst 73: 243-254.
  2. Altschul SF, Madden TL, Schaffer AA, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389-3402.
  3. Bae YA, Moon SY, Kong Y, Cho SY, Rhyu MG (2001) CsRn1, a novel active retrotransposon in a parasitic trematode, Clonorchis sinensis, discloses a new phylogenetic clade of Ty3/gypsy-like LTR retrotransposons. Mol Biol Evol 18:1474-1483.
  4. Blair D, Xu ZB, Agatsuma T (1999) Paragonomiasis and the genus Paragonimus. Adv Parasitol 42: 113-222.
  5. Blesa D, Mart?nez-Sebasti?n MJ (1997) Bilbo, a non-LTR retrotransposon of Drosophila subobscura: a clue to the evolution of LINE-like elements in Drosophila. Mol Biol Evol 14: 1145-1153.
  6. Boeke JD, Garfinkel DJ, Styles CA, Fink GR (1985) Tyelements transpose through an RNA intermediate. Cell 40: 491-500.
  7. Bowen NJ, McDonald JF (1999) Genomic analysis of Caenorhabditis elegans reveals ancient families of retroviral-like elements. Genome Res 9: 924-935.
  8. Brindley PJ, Laha T, McManus DP, Loukas A (2003) Mobile genetic elements colonizing the genomes of metazoan parasites. Trends Parasitol 19: 79-87.
  9. Chomczynski P (1993) A reagent for the single-step simultaneous isolation of RNA, DNA, and proteins from cell and tissue samples. Biotechniques 15: 532-534.
  10. Cook JM, Martin J, Lewin A, Sinden RE, Tristem M (2000) Systematic screening of Anopheles mosquito genomes yields evidence for a major clade of Pao-like retrotransposons. Insect Mol Biol 9: 109-117.
  11. Copeland CS, Brindley PJ, Heyers O, et al. (2003) Boudica, a retrovirus-like long terminal repeat retrotransposon from the genome of the human blood luke Schistosoma mansoni. J Virol 77: 6153-6166.
  12. Dalle Nogare DE, Clark MS, Elgar G, Frame IG, Poulter RT (2002) Xena, a full-length basal retroelement from tetraodontid fish. Mol Biol Evol 19: 247-255.
  13. Drew AC, Brindley PJ (1997) A retrotransposon of the nonlong terminal repeat class from the human blood fluke Schistosoma mansoni. Similarities to the chicken-repeat-1-like elements of vertebrates. Mol Biol Evol 14: 602-610.
  14. Evgen'ev MB, Zelentsova H, Shostak N, et al. (1997) Penelope, a new family of transposable elements and its possible role in hybrid dysgenesis in Drosophila virilis. Proc Natl Acad Sci USA 94: 196-201.
  15. Felder H, Herzceg A, de Chastonay Y, Aeby P, Tobler H, Muller F (1994) TAS, a retrotransposon from the parasitic nematode Ascaris lumbricoides. Gene 149: 219-225.
  16. Felsenstein J (1993) PHYLIP (phylogeny inference package). Version 3.5c. Distributed by the author (http://evolution.genetics.washington.edu/phylip.html), Department of Genetics, University of Washington, Seattle, USA.
  17. Finnegan DJ (1992) Transposable elements. Curr Opin Genet Dev 2: 861-867.
  18. Kido Y, Saitoh M, Murata S, Okada N (1995) Evolution of the active sequences of the Hpa I short interspersed elements. J Mol Evol 41: 986-995.
  19. Kidwell MG, Lisch D (1997) Transposable elements as sources of variation in animals and plants. Proc Natl Acad Sci USA 94: 7704-7711.
  20. Labrador M, Farre M, Utzet F, Fontdevila A (1999) Interspecific hybridization increase transposition rates of Osvaldo. Mol Biol Evol 16: 931-937.
  21. Li WH, Gu Z, Wang H, Nekrutenko A (2001) Evolutionary analyses of the human genome. Nature 409: 847-849.
  22. Malik HS, Burke WD, Eickbush TH (1999) The age and evolution of non-LTR retrotransposable elements. Mol Biol Evol 16: 793-805.
  23. Malik HS, Eickbush TH (1999) Molecular evolution of the integrase domain in the Ty3/Gypsy class of LTR retrotransposons. J Virol 73: 5186-5190.
  24. Malik HS, Eickbush TH (2001) Phylogenetic analysis of ribonuclease H domains suggests a late, chimeric origin of LTR retrotransposable elements and retroviruses. Genome Res 11: 1187-1197.
  25. Manninen O, Kalendar R, Robinson J, Schulman AH (2000) Application of BARE-1 retrotransposon markers to the mapping of a major resistance gene for net blotch in barley. Mol Gen Genet 264: 325-334.
  26. Nicholas KB, Nicholas HB Jr (1997) GeneDoc: a tool for editing and annotation multiple sequence alignments. Distributed by the authors (www.cris.com/-ketchup/genedoc.html).
  27. O'Neill RJ, O'Neill MJ, Graves JA (1998) Undermethylation associated with retroelement activation and chromosome remodeling in an interspecific mammalian hybrid. Nature 393: 68-72.
  28. Page RD (1996) Tree View: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12: 357-358.
  29. Park GM, Lee KJ, Im KI, Park H, Yong TS (2001) Occurrence of a diploid type and a new first intermediate host of a human lung fluke, Paragonimus westermani, in Korea. Exp Parasitol 99: 206-212.
  30. Peterson-Burch BD, Voytas DF (2002) Genes of the Pseudoviridae (Ty1/copia retrotransposons). Mol Biol Evol 19: 1832-1845.
  31. Pringle CR (1999) Virus taxonomy-1999. The universal system of virus taxonomy, updated to include the new proposals ratified by the International Committee on Taxonomy of Viruses during 1998. Arch Virol 144: 421-429.
  32. Regev A, Lamb MJ, Jablonka E (1998) The role of DNA methylation in invertebrates: developmental regulation or genome defense? Mol Biol Evol 15: 880-891.
  33. SanMiguel P, Tikhonov A, Jin YK, et al. (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274: 765-768.
  34. Thompson JD, Gibson TJ, Plewniak E, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignments aided by quality analysis tools. Nucleic Acids Res 25:4876-4882.
  35. Tristem M (1996) Amplification of divergent retroelements by PCR. Biotechniques 20: 608-612.
  36. Xiong Y, Eickbush TH (1990) Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J 9: 3353-3362.
  37. Zhao XP, Si Y, Hanson RE, et al. (1998) Dispersed repetitive DNA has spread to new genomes since polyploid formation in cotton. Genome Res 8: 479-492.