Extracellular $K^+$ Effects on the Mouse Aortic Endothelial Cell Contractility

쥐 대동맥 혈관 내피세포에서 세포 외 $K^+$에 의한 혈관 수축선 조절 기전

  • 안재호 (이화여자대학교 의과대학 흉부외과학교실) ;
  • 유지영 (한림대학교 의과대학 응급의학과교실)
  • Published : 2003.12.01

Abstract

External stimuli increases intracellular (IC) $Ca^{2+}$, which increases extracellular (EC) $K^{+}$. To verify $K^{+}$ effects on the vascular contraction, we performed an experiment using mouse aortic endothelial cell. Meterial and Method: We examined the mouse aortic contractility changes as we measured the IC $Ca^{2+}$ change and ionic current by using the voltage clamp technique under different conditions such as: increasing EC $K^{+}$, removing endothelial cell, giving L-NAME (N-nitro-L-arginine methyl ester) which suppress nitric oxide formation, Ouabain which control N $a^{+}$ - $K^{+}$ pump and N $i^{2+}$ which repress N $a^{+}$-C $a^{2+}$ exchanger Result: When we increased EC $K^{+}$ from 6 to 12 mM, there was no change in aortic contractility. Aorta contracted with more than 12 mM of EC $K^{+}$. Ace-tylcholine (ACh) induced relaxation was inhibited with EC $K^{+}$ from 6 to 12 mM, but was not found after de-endothelialization or L-NAME treatment. ATP or ACh increased IC $Ca^{2+}$ in cultured endothelium. After maximal increase of IC $Ca^{2+}$, increasing EC $K^{+}$ from 6 to 12 mM made IC $Ca^{2+}$ decrease and re-decreasing EC $K^{+}$ to 6 mM made IC $Ca^{2+}$ increase. Ouabain and N $i^{2+}$ masked the inhibitory effect of endothelium dependent relaxation by increased EC $K^{+}$. Conclusion: These data indicate that increase in EC $K^{+}$ relaxes vascular smooth muscle and reduces $Ca^{2+}$ in the endothelial cells which inhibit endothelium dependent relaxation. This inhibitory mechanism may be due to the activation of N $a^{+}$- $K^{+}$ pump and N $a^{+}$-C $a^{2+}$ exchanger. $a^{+}$-C $a^{2+}$ exchanger.r.

외부 자극에 의해 세포 내 $Ca^{2+}$이 증가하면 $K^{+}$이 유출되는 기전을 통해 세포 외 $K^{+}$이 증가하는데, 이 $K^{+}$ 의 증가가 혈관 수축에 미치는 영향을 규명하고자 쥐 대동맥 혈관내피세포를 이용해 실험을 시행하였다. 대상 및 방법: 세포 외 $K^{+}$ 농도를 증가시키거나, 혈관 내피세포의 제거, nitric oxide 생성 억제제인 L-NAME (N-nitro-L-arginine methyl ester)의 투여, $Na^{+}$- $K^{+}$ pump 억제제인 Ouabain, $Na^{+}$-C $a^{2+}$ exchanger 억제제인 N $i^{2+}$의 투여 등 조건을 달리하며, 막전압고정법을 이용, $Ca^{2+}$ 변화와 여러 이온 전류 변화를 측정해 혈관의 수축성을 알아보았다. 결과: 세포외 $K^{+}$ 농도를 6에서 12 mM 증가시켜도 norepinephrine에 의한 혈관의 수축성에는 변화가 없었고, 12 mM 상으로 증가시키면 평활근이 수축하기 시작하였다. Acetylcholine (ACh)에 의해 유발된 내피세포 의존성 이완은 세포 외 $K^{+}$ 농도를 6에서 12 mM로 증가시키면 억제되었으며, 혈관내피세포를 제거하거나 L-NAME을 투여하는 경우에 ACh에 의한 이완은 일어나지 않았다. 배양한 쥐 대동맥 내피세포에서는 ATP혹은 ACh에 의해 세포 내 $Ca^{2+}$이 증가하였으며, 세포 내 $Ca^{2+}$ 증가가 정점에 이른 후 세포 외 $K^{+}$을 6에서 12 mM로 증가시키면 세포 내 $Ca^{2+}$이 농도 의존적으로 감소하였으나 다시 6 mM로 감소시키면 세포 내 $Ca^{2+}$이 증가하였다. 또한 세포 외 $K^{+}$ 증가에 의한 내피세포 의존성 이완효과는 Ouabain과 N $i^{2+}$에 의하여 억제되었다. 걸론 세포 외 $K^{+}$의 증가는 저항혈관 평활근은 이완시키며, 혈관내피세포 $Ca^{2+}$을 감소시켜 내피세포 의존성 이완을 억제하는데 이는 $Na^{+}$- $K^{+}$ pump와 $Na^{+}$-C $a^{2+}$exchanger를 활성화시켜 일어나는 것으로 생각된다.

Keywords

References

  1. Faseb J v.3 Endothelium-derived relaxing and contracting factors Furchgott,R.F.;Vanhoutte,P.M. https://doi.org/10.1096/fasebj.3.9.2545495
  2. Br j Pharmacol v.93 Endothelim-dependent hyperpolarization of canine coronary smooth muscle Feletou,M.;Vanhoutte,P.M. https://doi.org/10.1111/j.1476-5381.1988.tb10306.x
  3. J Mol Cell Cardiol v.31 NO: the primary EDRF Fleming,I.;Busse,R. https://doi.org/10.1006/jmcc.1998.0839
  4. Nature v.327 Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor Palmer,R.M.;Ferrige,A.G.;Moncada,S. https://doi.org/10.1038/327524a0
  5. Tr Pharm Sci v.9 Endthelium-derived hyperpolarizing factor: a new endogenous inhibitor from the vascular endothelium Taylor,S.G.;Weston,A.H. https://doi.org/10.1016/0165-6147(88)90003-X
  6. Blood Vessels v.24 Endothelium-dependent contractions in arteries and veins Vanhoutte,P.M.
  7. Nature v.332 A novel potent wasoconstrictor peptide produced by vascular endothelial cells Yanagisawa,M.;Kurihara,H.;Kimuri,S.(et al.) https://doi.org/10.1038/332411a0
  8. Basic Res Cardiol v.86 no.Suppl 2 Cullular mechanisms controlling EDRF/NO formation in endothelial cells Busse,R.;Lckhoff,A.;Mulsch,A.
  9. News physiol Sci v.7 Regulation of prostacyclin synthesis in endothelial cells Carter,T.D.;Pearson,J.D.
  10. Annu Rev Physiol v.57 Endothelium: As an endocine organ Inagami,T.;Naruse,M.;Hoover,R. https://doi.org/10.1146/annurev.ph.57.030195.001131
  11. Comprehensive human physiology Biology of the vascular wall and its interactin with migratory and blood cells Nilius,b.;Casteels,R.;Greger,R.;Windhorst,U.
  12. News Physiol v.6 Regulation of transmembtane calcium fluxes in endithelium Nilius,B.
  13. Nature v.396 $K^+$ is and endothelium-derived hyperpolarizing factor in rat arteries Edwards,G.;Dora,K.A.;Gardener,M.J.;Garland,c.J.;Weston,A.H. https://doi.org/10.1038/24388
  14. Am J Physiol v.275 Characterization of the cloned human intermediate-conductance $Ca^{2+}$ -activated $K^+$ channel Jensen,B.S.;Strbrk,D.;Christophersen,P.(et al.) https://doi.org/10.1152/ajpcell.1998.275.3.C848
  15. J Membr Biol v.167 Induction of $Ca^{2+}$ -activated $K^+$ current and transient outward currents in human capillary endothelial cells Jow,F.;Sullivan,K.;Sokol,P.;Nurnann,R.
  16. J Cell Biol v.107 Role of laminin and basement membrane in the morphological differectation of human endothelial cells into capillary-like structures Kubota,Y.;Kleinman,H.K.;Martin,G.R.;Lawley,T.J. https://doi.org/10.1083/jcb.107.4.1589
  17. J Cell Biochem v.40 The interaction of plasminogen activator with a reconstituted basement membrane matrix and extracellular macromolecules produced by cultured epitelial cells McQuire,P.G.;Seeds,N.W. https://doi.org/10.1002/jcb.240400210
  18. Am J Physiol v.272 Downregulation of volumeactivated CI currents during muscle differentiation Voets,T.;Wei,L.;Desmet,P.(et al.) https://doi.org/10.1152/ajpcell.1997.272.2.C667