DOI QR코드

DOI QR Code

Growth of SiC Nanowire Using Carbothermal Reduction Method

열탄화법을 사용한 탄화규소 나노와이어의 성장

  • Rho, Dae-Ho (Korea University, Department of Materials Science and Engineering) ;
  • Kim, Jae-Soo (Korea Institute of Science and Technology, Metal Processing Research Center) ;
  • Byun, Dong-Jin (Korea University, Department of Materials Science and Engineering) ;
  • Yang, Jae-Woong (Daejin University, Department of Advanced Materials Science and Engineering) ;
  • Kim, Na-Ri (Korea University, Department of Materials Science and Engineering)
  • 노대호 (고려대학교 재료공학과) ;
  • 김재수 (한국과학기술연구원 금속공정연구센터) ;
  • 변동진 (고려대학교 재료공학과) ;
  • 양재웅 (대진대학교 신소재공학과) ;
  • 김나리 (고려대학교 재료공학과)
  • Published : 2003.10.01

Abstract

SiC nanowires were synthesized by carbothermal reduction using metal catalysts. Synthesized nanowires had mean diameters of 30∼50 nm and several $\mu\textrm{m}$ length. The kind of catalysts affects form of SiC nanowire because of difference of growth mechanisms. These differences were made by catalyst's physical property and relative activities to the source gas. Ni acted a conventional catalyst of VLS growth mechanism. But, Case of Fe, SiC nanowire was grown by stable VLS growth mechanism without relation of growth conditions. SiC nanowire was grown by two step growth model using Cr catalyst. Conversion ratios to the SiC nanowire were increased with growth conditions. Case of Cr, conversion ratio was about 45% that was higher than other catalyst used. This high conversion ratio was obtained by the addition VS growth to radial direction on the as-grown nanowires.

Keywords

References

  1. O. Kordina, L. O. Bjorketun, A. Henry, C. Hallin, R. C. Glass, L. Hultman, J. E. Sundgren, E. Janzen, J. Crystal Growth, 154(3), 303 (1995) https://doi.org/10.1016/0022-0248(95)00136-0
  2. J. M. Bonard, H. Kind, T. Stockli, L. O. Nilson, Solid State Electronics, 45(6), 893 (2001) https://doi.org/10.1016/S0038-1101(00)00213-6
  3. L. C. Chen, S. W. Chang, C. S. Chang, C. Y. Wen, J. J. Wu, Y. F. Chen, Y. S. Huang, K.H. Chen, J. Phys. Chem. Solids, 62(9), 1567 (2001) https://doi.org/10.1016/S0022-3697(01)00096-8
  4. M. He, I. Minus, P. Zhou, S. N. Mohammed, J. B. Halpern, R. Jacobs, W. L. Sarney, L. S. Riba, R. D. Vispute, Appl. Phys. Lett., 77(22), 3731 (2000) https://doi.org/10.1063/1.1329863
  5. H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang, D. P. Yu, Y. Ding, Q. L. Hang, S. Q. Feng, Solid State Comm., 109(11), 677 (1999) https://doi.org/10.1016/S0038-1098(99)00015-0
  6. B. Xu, H. He, S. Boussaad, N. J. Tao, Electrochimica Acta, 48(21), 3085 (2003) https://doi.org/10.1016/S0013-4686(03)00386-4
  7. J. V. Milewski, F. D. Gac, J. J. Petrovic, S. R. Skaggs, J. Mater. Sci., 20, 1160 (1985) https://doi.org/10.1007/BF01026309
  8. H. J. Dai, E. W. Wang, Y Z. Lu, S. S. Fang, C. M. Liber, Nature, 375(9), 769 (1995) https://doi.org/10.1038/375769a0
  9. G. W. Meng, L. D. Zhang, C. M. Mo, F. Phillipp, Y Qin, H. J. Li, S. P. Feng, S. Y Zhang, Mater. Res. Bull., 34(5), 783 (1999) https://doi.org/10.1016/S0025-5408(99)00073-2
  10. C. C. Tang S. S. Fan, H. Y dang, J. H. Zhao, C. Zhang, P. Li, Q. Gu, J. Crystal Growth, 210(4), 595 (2000) https://doi.org/10.1016/S0022-0248(99)00737-X
  11. W Shi, Y Zheng, H. Peng, N. Wang, C. S. Lee, S. T. Lee, J. Am. Ceram. Soc, 83(12), 3228 (2000) https://doi.org/10.1111/j.1151-2916.2000.tb01714.x
  12. Y. B. Li, S. S. Xie, X. P. Zou, D. S. Tang, Z. Q. Jiu, W. Y Zhou, G. Wang, J. Crystal Growth, 223(2), 125 (2000)
  13. D. H. Rho, J. S. Kim, D. J. Byun, J. W. Wang, R. I. Kim, Kor. J. Mater. Res., 13(6), 404 (2003) https://doi.org/10.3740/MRSK.2003.13.6.404
  14. E. I. Givargizov, J. Crystal Growth, 31(1), 20 (1975) https://doi.org/10.1016/0022-0248(75)90105-0
  15. Z. W. Pan, S. S. Xie, L. F. Sun, G. Wang, Chem. Phys. Lett., 299(1), 97 (1999) https://doi.org/10.1016/S0009-2614(98)01240-8
  16. C. J. Lee, J. H. Park, J. Park, Chem. Phys. Lett., 323(6), 560 (2000) https://doi.org/10.1016/S0009-2614(00)00548-0
  17. Z. G. Bai, D. P. Yu, H. Z. Zhang, Y Ding, Y P. Wang, X. Z. Gai, Q. L. Hang, G. C. Xiong, S. Q. Feng, Chem. Phys. Lett., 303(3), 311 (1999) https://doi.org/10.1016/S0009-2614(99)00066-4
  18. H. Yumoto, R. R. Hasiguti, T. Watanabe, N. Igata, J. Crystal growth, 87(1), 1 (1988) https://doi.org/10.1016/0022-0248(88)90337-5
  19. E. I. Givargizov, J. Crystal Growth, 20(3), 217 (1973) https://doi.org/10.1016/0022-0248(73)90008-0
  20. X, T. Zhou, H. L. Lai, H. Y. Peng, F. C. K. Au, L. S. Liao, N. Wang, I. Bello, C. S. Lee, S. T. Lee, Chem. Phys. Lett., 318(1), 58 (2000) https://doi.org/10.1016/S0009-2614(99)01398-6
  21. Y Zhang, N. Wang, R. He, X. Chen, J. Zhou, Solid State Communications, 118(11), 595 (2001) https://doi.org/10.1016/S0038-1098(01)00181-8
  22. S. R. Nutt, J. Am. Ceram. Soc, 71(3), 149 (1988) https://doi.org/10.1111/j.1151-2916.1988.tb05021.x
  23. K. M. Knowels, M. V. Ravichandran, J. Am. Ceram. Soc, 80(5), 1165 (1997) https://doi.org/10.1111/j.1151-2916.1997.tb02959.x
  24. Y. Zhang, N. Wang, S. Gao, R. He, S. Miaigno, I. Zhu, X. Zhang, Chem. Mater., 14(8), 3564 (2002) https://doi.org/10.1021/cm0201697
  25. W. Han, P. Redlich, F. Ernst, Appl. Phys. Lett., 75(13), 1875 (1999) https://doi.org/10.1063/1.124857
  26. H. J. Li, Z. J. Li, A. L. Meng, K. Z. Li, X. N. Zhang, Y. P. Xu, J. Alloys and Compounds, 352(2), 279 (2003) https://doi.org/10.1016/S0925-8388(02)01111-8
  27. B. C. Satishkumar, P. J. Thomas, A. Govindaraj, C. N. R. Rao, Appl. Phys. Lett., 77(16), 2530 (2000) https://doi.org/10.1063/1.1319185
  28. X. T. Zhou, N. Wang, F. C. K. Au, H. L. Lai, H. Y. Peng, I. Bello, C. S. Lee, Mater. Sci. and Eng., A286, 119 (2000)