Microalgal Biotechnology: Carotenoid Production by the Green Algae Dunaliella salina

  • Jin, Eon-Seon (Environmental Science Laboratory, Korea Ocean Research and Development Institute (KORDI)) ;
  • Anastasios Melis (Department of Plant and Microbial Biology, 111 Koshland Hall, University of California)
  • Published : 2003.12.01

Abstract

Unicellular green algae of the genus Dunaliella thrive in extreme environmental conditions such as high salinity, low pH, high irradiance and subzero temperatures. Species of Dunaliella are well known in the alga biotechnological industry and are employed widely for the production of valuable biochemicals, such as carotenoids. Some strains of Dunaliella are cultivated commercially in large outdoor ponds and are harvested to produce dry algal meals, such as polyunsaturated fatty acids and oils for the health food industry, and coloring agents for the food and cosmetic industries. During the past decade, the advances in molecular biology and biochemistry of microalgae, along with the advances in biotechnology of microalgal mass cultivation, enabled this microalga to become a staple of commercial exploitation. In particular, the advent of molecular biology and mutagenesis in Dunaliella has permitted enhancements in the carotenoids content of this green alga, making it more attractive for biotechnological applications. Accordingly, the present review summarizes the recent developments and advances in biotechnology of carotenoid production in Dunaliella.

Keywords

References

  1. J. Microbiol. Bioechnol. v.13 Xanthophylls in microalgae: from biosynthesis to biotechnological mass production and application Jin,E.S.;J.W.E.Polle;H.K.Lee;S.Hyun;M.Chang
  2. J. Phycol. v.35 Commerical developments in microalgal biotechnology Apt,K.E.;P.W.Berhrens https://doi.org/10.1046/j.1529-8817.1999.3520215.x
  3. Tayler & Francis Production of β-carotene from Dunaliella;Chemicals from Microalgae Ben-Amotz,A.;Z.Cohen(ed.)
  4. Longman Scientific & Technical The biotechnology of mass culturing Dunaliella for products of commerical interest;Algal and Cyanobacterial Biotechnology Ben-Amotz,A.;M.Avron;R.C.Cresswell(ed.);T.A.V.Rees(ed.);N.Shah(ed.)
  5. Dunaliella Borowitzka,M.A.;L.J.Borowitzka;M.A.Borowitzka(ed.);L.J.Borowitzka(ed.)
  6. Vitamins and fine chemicals from microalgae Borowitzka,M.A.;M.A.Borowitzka(ed.);L.J.Borowitzka(ed.)
  7. J. Phycol. v.30 Effect of temperature and irradiance on growth of Haematococcus pluvialis (Chlorophyceae) Fan,L.;A.Vonshak;S.Boussiba https://doi.org/10.1111/j.0022-3646.1994.00829.x
  8. J. Biol. Chem. v.276 Ketocarotenoid biosynthesis outside of plastids in the unicellular green alga Haematococcus pluvialis Grunewald,K.;J.Hirschberg;C.Hagen https://doi.org/10.1074/jbc.M006400200
  9. J. Biotechnol. v.85 Lutein production by Muriellopsis sp. in an outdoor tubular photobioreactor Del Campo,J.A.;H.rodriguez;J.Moreno;M.A.Vargas;J.Rivas;M.G.Guerrero https://doi.org/10.1016/S0168-1656(00)00380-1
  10. J. Biotechnol. v.76 Carotenoid content of chlorophycean microalgae. Factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta) Del Campo,J.A.;J.Moreno;H.Rodriguez;M.A.Vargas;J.Rivas;M.G.Guerrero https://doi.org/10.1016/S0168-1656(99)00178-9
  11. Biotechnol. Bioeng. v.81 A mutant of the green alga Dunaliella salina constitutively accumulates zeaxanthin under all growth conditions Jin,E.S.;B.Feth;A.Melis https://doi.org/10.1002/bit.10459
  12. plant Cell Environ. v.16 Functional aspects of secondary carotenoids in Haematococcus lacustris (Girod) Rostafinski (Vovocales): V. Influences on photo movement Hagen,C.;W.Braune;K.Vogel;P.P.Hader https://doi.org/10.1111/j.1365-3040.1993.tb00523.x
  13. Arch. Biochem. Biophys. v.385 Lutein, zeaxanthin and the macular pigment Landrum,J.T.;R.Bone https://doi.org/10.1006/abbi.2000.2171
  14. Invest. Opthalmol. Vis. Sci. v.29 Analysis of the macular pigment by HPLC: Retinal distribution and age study Bone,R.A.;J.T.Landrum;L.Fernandez;S.L.Tarsis
  15. Clin, Nutr. v.7 The chemistry of carotenoids and their importance in food Daun,H.
  16. Invest. Ophthalmol. Vis. Sci. v.29 Carotenoids in the human macula and whole retina handelman,G.J.;E.A.Dratz;C.C.Reay;F.J.G.M.van Kuijk
  17. J. Nutr. v.120 Structural and geometric isomers of carotenoids in human plasma Krinsky,N.I.;M.D.Russett;G.J.Handelman;D.M.Snodderly https://doi.org/10.1093/jn/120.12.1654
  18. Invest. Ophthalmol. Vis. Sci. v.36 Measurement of carotenoids, retinoids, and tocopherols in human lenses Yeum,K.J.;A.Taylor;G.Tang;R.M.Russell
  19. Cancer Epidemiol. Biomarkers Prev. v.2 Intake of specific carotenoids and lung cancer risk Le Marchand;L.J.H.Hankin;L.N.Kolonel;G.R.Beecher;L.R.Wilkens;L.P.Zhao
  20. Progress in phycological Research v.7 Large scale microalgal culture and applications Richmond,A.;M.Round(ed.);S.Chapman(ed.)
  21. J. Am. Med. Assoc. v.272 Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration Seddon,J.M.;U.A.Ajani;R.D.Sperduto;R.Hiller;N.Blair;T.C.Burton;M.D.Farber;E.S.gragoudas;J.Haller;D.T.Miller;L.A.Yannuzzi;W.Willett https://doi.org/10.1001/jama.272.18.1413
  22. Arch. Ophthalmol. v.106 Antioxidant status in persons with and without senile cataract Jacques,P.F.;L.T.Chylack;R.B.McGandy;S.C.Hartz https://doi.org/10.1016/0002-9394(88)90371-6
  23. J. Am. Diet. Assoc. v.96 Update on the biological characteristics of the antioxidant micronutrients: Vitamin C, vitamin E and the carotenoids Rock,C.L.;R.A.Jacob;P.E.Bowen https://doi.org/10.1016/S0002-8223(96)00190-3
  24. Am J. Clin. Nutr. v.62 Evidence for protection against age-related macular degeneration by carotenoids and antioxidant vitamins Snodderly,M.D. https://doi.org/10.1093/ajcn/62.6.1448S
  25. Cancer Res. v.59 Lower prostate caner risk in men with elevated plasma lycopene levels: results of a prospective analysis Gann,P.H.;J.ma;E.Giovannucci;W.Willett;F.M.Sacks;C.H.Hennekens;M.J.Stampfer
  26. J. Natl. cancer Inst. v.87 Intake of carotenoids and retinol in relation to risk of prostate cancer Giovannucci,E.;A.Ascherio;E.B.Rimm;M.J.Stampfer;G.A.Colditz;W.C.Willett https://doi.org/10.1093/jnci/87.23.1767
  27. J. Natl. Cancer Inst. v.88 Improtance of α-carotene, β-carotene and other phytochemicals in the etiology of lung cancer Ziegler,R.G.;E.A.Colavito;P.Hartge;M.J.McAdams;J.B.Schoenberg;T.J.Mason;J.F.Fraumeni,Jr. https://doi.org/10.1093/jnci/88.9.612
  28. Comp. Biochem. Physiol. v.86 Natural occurrence of enantiomeric and meso astaxanthin in crustaceans including zooplankton Foss,P.
  29. Comp. Biochem. Physiol. v.78 Carotenoids in the Pacific salmon during the marine period Kitahara,T. https://doi.org/10.1016/0300-9629(84)90646-7
  30. Trends Biotechnol. v.18 Commercial potential for Haematococcus microalgae as a natural source of astaxanthin Lorenz,R.T.;G.R.Cysewski https://doi.org/10.1016/S0167-7799(00)01433-5
  31. App. Microbiol. Biotechnol. v.51 Production of keto carotenoids by microalgae Margalith,P.Z. https://doi.org/10.1007/s002530051413
  32. Trends Biotechnol. v.8 The biotechnology of cultivating the halotolerant alga Dunaliella Ben-Amotz,A.;M.Avron https://doi.org/10.1016/0167-7799(90)90152-N
  33. Dunaliella: Physiology, Biotechemistry, and Biotechnology Avron,M.;A.Ben-Amotz
  34. J. Phycol. v.18 Acumulation of beta-carotene in halotolerant algae: Purification and characterization of beta-carotene-rich globules from Dunaliella bardawil (Chlorophyceae) Ben-Amotz,A.;A.Katz;M.Avron https://doi.org/10.1111/j.1529-8817.1982.tb03219.x
  35. Plant Physiol. v.91 Mode of action of the massively accumulated β-carotene of Dunaliella bardawil in protecting the alga against damage by excess irradiation Ben-Amotz,A.;A.Shaish;M.Avron https://doi.org/10.1104/pp.91.3.1040
  36. Planta v.190 Are active oxygen species involved in induction of betacarotene in Dunaliella bardawil? Shaish,A.;M.Avron;U.Pick;A.Amotz
  37. J. Phycol v.35 Low-temperature-induced synthesis of α-carotene in the microalgae Dunaliella salina (chlorophyta) Orset,S.C.;A.J.Young https://doi.org/10.1046/j.1529-8817.1999.3530520.x
  38. Planta v.190 Are active oxygen species involved in induction of betacarotene in Dunaliella bardawil? Shaish,A.;M.Avron;U.Pick;A.Amotz
  39. J. Biotechnol. v.70 Commercial production of microalgae: pond, tank, and fermenters Borowitzka,M.A. https://doi.org/10.1016/S0168-1656(99)00083-8
  40. Profiles on Biotechnology Comparing carotenogenesis in Dunaliella and Haematococcus: Implcations for commercial strategies Borowitzka,M.A.;T.G.Villa(ed.)J.Abalde(ed.)
  41. Plant Physiol. v.122 Exposure to low irradiances favors the synthesis of 9-cis beta, beta-carotene in Dunaliella salina (Teod.) Orset,S.C.;A.J.Young https://doi.org/10.1104/pp.122.2.609
  42. Ann. Rev. Microbiol. Genetics of eubacterial carotenoid bisoynthesis: A colorful tale Armstrong,G.A.
  43. Proc. Natl. Acad. Sci. v.95 Altered xanthophyll compositions adversely affect chlorophyll accumulation and non-photochemica quenching in Arabidopsis mutants Pogson,B.J.;K.K.Niyogi;O.Bjorkman;D.Dellapenna https://doi.org/10.1073/pnas.95.22.13324
  44. Plant Cell v.8 Arabidopsis carotenoid mutants demonstrate that lutein is not essential for photosynthesis in higer plants Pogson,B.J.;K.A.McDonald;M.Truong;G.Britton;D.DellaPenna https://doi.org/10.1105/tpc.8.9.1627
  45. J. Appl. Phyol. v.7 New mode of Dunaliella biotechnology two-phage growth for β-carotene production Ben-Amotz,A. https://doi.org/10.1007/BF00003552
  46. EMBO J. v.15 Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscic acid biosynthesis and corresponding to ABA locus of Arabidopsis thaliana Marin,E.;L.Anussaume;A.Quesada;M.Gonneau;B.Sotta;P.Hugueney;A.Frey;A.Marion-Poll
  47. J. Biotechnol. v.59 Metabolic engineering for the production of carotenoids in non-carotenogenic bacteria and yeast Misawa,N.;H.Shimada https://doi.org/10.1016/S0168-1656(97)00154-5
  48. Biochem. Biophys. Res. Comm. v.209 Canthaxanthin biosynthesis by the conversion of methylene to keto groups in a hydrocarbon β-carotene by a single gene Misawa,N.;S.Kajiwara;K.Kondo;A.Yokoyama;Y.Satomi https://doi.org/10.1006/bbrc.1995.1579
  49. Tetrahedron Lett. v.39 Production of new carotenoids, astaxanthin glucosides, by E. coli. transformations carrying carotenoid biosynthetic genes Yokoyama,A.;Y.Shizuri;N.Misawa https://doi.org/10.1016/S0040-4039(98)00542-5
  50. Appl. Eviron. Microbiol. v.66 Increased production of zeaxanthin and other pigments by application of genetic engineering techniques to Synechocystis sp. strain PCC6803 Lagarde,D.;L.Beuf;W.Vermaas https://doi.org/10.1128/AEM.66.1.64-72.2000
  51. J. Phycol. v.33 Genetic enginering of eukaryotic algae: progress and prospects Stevens,D.R.;S.Putron
  52. Cur. Microbiol. v.35 Stable transformation of Chlorella: Rescue of nitrate reductase-deficient mutants with the nitrate reductase gene Bawson,H.N.;R.Burlingame;A.C.Cannons https://doi.org/10.1007/s002849900268
  53. Mar. Biotechnol. v.4 Stable integration and functional expression of flounder growth hormone gene in transformed microalga, Chlorella ellipsoidea Kim,D.H.;Y.T.Kim;J.J.Cho;J.H.Bae;S.B.Hur;I.Hwang;T.J.Choi https://doi.org/10.1007/s1012601-0070-x
  54. Mol. Gen. Gene. v.252 Stable nuclear transformation of diatom Phaeodactylum tricornutum Apt,K.E.;P.G.Kroth-Pacific
  55. J. Phycol. v.31 Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila Dunahay,T.G.;E.E.Jarvis;P.G.Rossler https://doi.org/10.1111/j.0022-3646.1995.01004.x
  56. Mar. Biotechnol. v.1 Transformation of nonselectable reporter genes in marine diatoms Falciatore,A.;R.Casotti;C.Leblanc;C.Abrescia;C.Bowler
  57. Science v.292 Trophic conversion of an obligate photoautotrophic organism through engineering Zaslavskaia,L.A.;J.C.Lippmeier;C.Shih;D.Ehrhardt;A.R.Grossman;K.E.Apt https://doi.org/10.1126/science.160015
  58. J. Phycol. v.36 Transformation of the diatom Phaeodactylum tricornutum (Bacillariophyceae) with a variety of selectable marker and reporter genes Zaslavskaia,L.A.;J.C.Lippmeier;P.G.Kroth;A.R.Grossman;K.E.Apt https://doi.org/10.1046/j.1529-8817.2000.99164.x
  59. Biochim. Biophys. Acta v.1506 Involvement of zeaxanthin and of the Cbr protein in the repair of photosystem-Ⅱ from photoinhibition in the green alga Dunaliella salina Jin,E.S.;J.W.E.Polle;A.Melis https://doi.org/10.1016/S0005-2728(01)00223-7
  60. Proceedings of 7th ISPMB Developing nuclear transformation system for the unicellular green alga Dunaliella tertiolecta Walker,T.;D.Becker;C.Collet
  61. Plant Physiol. v.115 The PsaD subunit of photosystem Ⅰ: mutations in the basic domain reduce the level of PsaD in the membranes Chitnis,V.P.;A.Ke;P.R.Chitnis https://doi.org/10.1104/pp.115.4.1699
  62. Biochim Biophys. Acta v.1367 Chlamydomonas genetics, a tool for the study of bioenergetic pathways Hippler,M.;K.Redding;J.D.Rochaix https://doi.org/10.1016/S0005-2728(98)00136-4
  63. Methods Enzymol. v.297 Isolation and functional study of photosystem Ⅰ subunits in the cyanobacterium Synechocystis sp. PCC 6803 Sun,J.;A.Ke;P.Jin;V.P.Chitnis;P.R.Chitnis https://doi.org/10.1016/S0076-6879(98)97010-0
  64. Plant Cell v.15 Zeaxanthin accumulation in the absence of a functional xanthophyll cycle protects Chlamydomonas reinhardtii from photooxidative stress Baroli,I.;D.D.An;T.Yamane;K.K.Niyogi https://doi.org/10.1105/tpc.010405
  65. Proceedings of 7th ISPMB Alteration of stress resistance by modification of carotenoid biosynthesis in higher plants Woitsch,S.;V.Reiser;T.Gots;A.Feyel;T.Wagner;S.Romer
  66. Biotechnol. Lett. v.21 Metabolic engineering of the terpenoid biosynthetic pathway of Escherichia coli for production of the carotenoids β-carotene and zeaxanthin Albrecht,M.;N.Misawa;G.Sandmann https://doi.org/10.1023/A:1005547827380
  67. Appl. Miocrobiol. Biotechnol. v.48 Production of zeaxanthin in Escherichia coli transformed with different carotenogenic plasmid Ruther,A.;N.Misawa;P.Boger;G.Sandman https://doi.org/10.1007/s002530051032