Induction of Iron Superoxide Dismutase by Paraquat and Iron in Vitreoscilla $C_1$

Vitreoscilla $C_1$에서 paraquat와 Iron에 의한 Iron Superoxide Dismutase의 유도

  • 박기인 (전북대학교 자연과학대학 생물과학부)
  • Published : 2003.12.01

Abstract

Superoxide dismutase which is metalloenzyme that decomposes superoxide radicals into hydrogen peroxide and molecular oxygen. Vitreoscilla has FeSOD. Expression of FeSOD to paraquat was largely constitutive. This suggests that the basal level of FeSOD is sufficient to provide protection against superoxide generated during normal aerobic metabolism. Induction of SOD by iron supports that insertion of the active site metal into the corresponding apoprotein. The effect of paraquat on induction by iron seemed that iron brought the synergism effect in SOD activity with paraquat. It suggests that the relief of growth inhibition is due to protection against the lethality of O$_2$afforded by the elevated SOD. There may be control of FeSOD activity posttranslationally. Posttranslation control of enzyme function is particularly feasible for a metalloenzyme, for which conversion of apo- to holoenzyme may be the rate-limiting or regulatory step.

본 연구에서는 절대적 호기성인 Vitreoscilla가 지닌 FeSOD의 특성을 밝히고자 paraquat와 iron을 사용하여 실험하였다. Vitreoscilla에서 FeSOD의 활성도는 초산화 음이온을 생성하는 paraquat에 대해 커다란 영향 없이 일정하게 발현되었다. 이 결과는 Vitreoscilla는 호기적인 물질대사 동안 생성되어지는 초산화 음이온에 대해 방어할 수 있을 만큼 충분한 FeSOD를 평상시 지니고 있음을 의미한다. 또한 다른 요소에 의한 FeSOD의 발현 가능성이 고려되어졌다. 보조 인자인 Fe 를 처리한 결과 활성도가 증가됨을 알 수 있었다. 이는 CN-resistant respiration을 증가시키는 초산화 음이온에 대한 조절 기작과는 달리 apoenzyme 상태가 보조 인자인 금속 이온 (Fe)에 의해 holoenzyme 상태로 전환되었음을 의미한다. PQ와 Fe를 함께 처리하였을 경우, FeSOD의 증가는 PQ에 의해서 생성된 초산화 음이온에 의해 apo 상태에서 hole 상태로 FeSOD의 활성이 증진되는 synergism effect로 설명되어진다. 결론적으로 metalloenzyme인 SOD의 경우는 이런 전환이 활성 속도를 제한하거나 조절할 수도 있는 posttranslational 수준의 조절 기작이 존재함을 알 수 있었다.

Keywords

References

  1. Science v.201 The biology of oxygen radicals. The superoxide radical is an agent of oxygen toxicity; superoxide dismutase provide an important defense Fridovich,I https://doi.org/10.1126/science.210504
  2. Science v.240 DNA damage and oxygen radical toxicity Imaly,J.A.;S.Lim https://doi.org/10.1126/science.3287616
  3. J. Bacteriol. v.178 Cloning and characterization of the katA gene of Rhizobium meliloti encoding a hydrogen peroxide-inducible catalase Herouart,D.;S.Sigaud;S.Moreau;P.Frendo;D.Youati;A.Buppo https://doi.org/10.1128/jb.178.23.6802-6809.1996
  4. Ifect. Immun. v.61 Identification of Legionella pneumophilia genes required for growth within and killing of human macrophages Sadosky,A.B.;L.A.Wiater;H.A.Shuman
  5. J. Bacteriol. v.177 Biochemical and genetic analysis of a catalase from the anaerobic bacterium Bacteriodes fragilis Rocha,E.R.;C.J.Smith https://doi.org/10.1128/jb.177.11.3111-3119.1995
  6. Eur. J. Biochem. v.241 Differential expression of superoxide dismutases containing Ni and Fe/Zn in Streptomyces coelicolor Kim,E.J.;H.P.Kim;Y.C.Hah;J.H.Roe https://doi.org/10.1111/j.1432-1033.1996.0178t.x
  7. Muller, Mol. Microbiol. v.27 Transcriptional and post-transcriptional regulation by nickel of sodN gene encoding nickel-containing superoxide dismutase from Streptomyces coelicolor Kim,E.J.;H.J.Chung;B.Suh;Y.C.Hag;J.H.Roe https://doi.org/10.1046/j.1365-2958.1998.00674.x
  8. Metals and microorganisms Hughes,M.N.;R.K.Poole
  9. Molecular biology of free radical scavenging systems Regulation and protective role of the microbial superoxide dismutas Touati,D.;J.G.Scandalios(Ed.)
  10. J. Biol. Chem. v.269 Escherichia coli expresses a copper- and zinc containing superoxide dismutase Benov,L.T.;I.Fridovich
  11. Arch. Biochem. Biophys. v.334 Unique isozymes of superoxide dismutase in Streptomyces griseus Youn,H.D.;H.Youn;J.W.Lee;Y.I.Yim;J.K.Lee;Y.C.Hah;S.O.Kang https://doi.org/10.1006/abbi.1996.0463
  12. J. Bacteriol v.129 Enzymatic defense against the toxicity of oxygen and streptonigrin in Escherichia coli Hassan,H.M.;I.Fridovich
  13. J. Bacteriol v.114 The induction of superoxide dismutase by molecular oxygen Gregory,E.M.;I.Fridovich
  14. Arch. Biochem. Biophys. v.136 Intracellular production of superoxide radical and hydrogen peroxide by redox active compounds Hassan,H.M.;I.Fridovich
  15. J. Bacteriol. v.160 Induction of superoxide dismutase in Escherichia coli by manganese and iron Pugh,S.y.R.;J.L.DiGuiseppi;I.Fridovich
  16. Systematic and Appl. Mocrobiol. v.5 The phylogeny of purple bacteria: the beta subdivision Woese,C.R.;W.G.Weisburg;B.J.Paster;C.M.Hahn;R.S.Tanner;N.R.Krieg;H.P.Koops;H.Harms;E.Stackebrandt https://doi.org/10.1016/S0723-2020(84)80035-1
  17. J. Gen. Appl. Microbiol. v.27 Control of heme content in Vitreoscilla by oxygen Boerman,S.J.;D.A.Webster
  18. Ph.D.Dissertation, Dept. of Biology, Chonbuk National University Enzyamatic and genetic studies on the iron superoxide dismutase purified from Vitreoscilla $C_1$ Oh,I.S.
  19. J. Bacteriol v.114 Oxygen toxicity and the superoxide dismutase Gregory,E.M.;I.Fridovich
  20. Microb. Ecol. v.15 The response of gram-negative, thermophilic bacteria to oxygen MacMichael,G.J. https://doi.org/10.1007/BF02011706
  21. J. Gen. Appl. Microbiol. v.24 Superoxide dismutase in facultatively anaerobic bacteria : enzyme level in relation to growth conditions Yano,K.;H.Nishie https://doi.org/10.2323/jgam.24.333