DOI QR코드

DOI QR Code

Axial Seamount Basalts in P3 Segment of Phoenix Ridge, Drake Passage, Antarctica: K-Ar Age Determination and Geochemistry

남극 드레이크 해협 피닉스 해령 P3구역 축부 해저현무암: K-Ar 연대측정과 지구화학

  • 이종익 (한국해양연구원 극지연구본부) ;
  • 허순도 (한국해양연구원 극지연구본부) ;
  • 이미정 (한국해양연구원 극지연구본부) ;
  • 김규중 (한국해양연구원 극지연구본부) ;
  • Published : 2003.03.31

Abstract

The axial seamount basalts in the P3 segment of the Phoenix Ridge were obtained from dredging and the K-Ar age determination and whole-rock geochemical analyses have been done for understanding their origin. The K-Ar ages for PRS basalts sampled from 1,000m below sea level are 2.6-2.2 Ma and those for PR3 basalts from 800m are 1.6-1.5 Ma. The younger ages towards the crest of the seamount indicate that this submarine volcano has been grown by central eruptions. The youngest age of about 1.5 Ma for PR3 basalts corresponds to the final eruption period of this volcano. The seamount basalts contain small amounts of normative quartz and olivine. They have transitional geochemical nature between alkaline- and subalkaline-series basalts. Trace and rare earth elements compositions of the seamount basalts are very similar to those of ocean island basalts (OIB), and indicate that this seamount has been formed by a hotspot activity, not in association with a seafloor spreading. The melting degree from the source has decreased with time, and finally the volcanic activity has stopped when the basaltic magma reached mild alkaline composition.

Keywords

References

  1. 김규중, 이상묵, 진영근, 남상헌, 김예동, 유인성, 윤종렬. 2000. 남극-피닉스 해령과 히어로 파쇄대 교차지역에 대한 중력 및 해저지형 연구. 극지환경 특성 및 보존에 관한 연구, BSPP 00001-05-1329-7, 한국해양연구원, 611-649.
  2. 이종익. 1994. X-선 형광분석기를 이용한 화강암류의 정량분석 프로그램 개발에 관한 연구. 한국해양연구소 기본과제 보고서, BSPE 00431-671-7, 43 p.
  3. 이종익, 허순도, 박병권, 한상준. 2001. 서태평양 캐롤라인군도 웨노섬 알칼리 현무암류의 지구화학 및 K-Ar 연대. Ocean Polar Res., 23, 23-34.
  4. 좌용주, 이종익. 2001. 브랜스필드 해협 해저화산의 지구화학. 남극광물자원 확보를 위한 환경특성 연구, BSPP 001-B3-1406-7, 한국해양연구원, 157-184.
  5. Barker, P.F. 1982. The Cenozoic subduction history of the Pacific margin of the Antarctic Peninsula: ridge crest-trench interactions. J. Geol. Soc. London, 139, 787-801. https://doi.org/10.1144/gsjgs.139.6.0787
  6. Barker, D.H.N. and J.A. Austin. 1998. Rift propagation, detachment faulting, and associated magmatism in Bransfield Strait, Antarctic Peninsula. J. Geophys. Res., 103, 24017-24043. https://doi.org/10.1029/98JB01117
  7. Cande, S.C. and R.B. Leslie. 1986. Late Cenozoic tectonics of the Southern Chile Trench. J. Geophys. Res., 91, 471-496. https://doi.org/10.1029/JB091iB01p00471
  8. Cande, S.C., R.B. Leslie, J.C. Parra, and M. Hobart. 1987. Interaction between the Chile Ridge and Chile Trench: Geophysical and geothermal evidence. J. Geophys. Res., 92, 495-520. https://doi.org/10.1029/JB092iB01p00495
  9. DeIaney, J.R., H.P. Johnson, and J.L. Karsten. 1981. The Juan de Fuca ridge-hotspot-propagating rift system: New tectonic, geochemical, and magnetic data. J. Geophys. Res., 86, 11747-11750. https://doi.org/10.1029/JB086iB12p11747
  10. Desonie, D.L. and R.A. Duncan. 1990. The Cobb-Eickel-berg seamount chain: Hotspot volcanism with mid-ocean ridge basalt affinity. J. Geophys. Res., 95, 12697-12711. https://doi.org/10.1029/JB095iB08p12697
  11. Douglass, J., J.-G. Schilling, and D. Fontignie. 1999. Plume-ridge interactions of the Discovery and Shona mantle plumes with the southern mid-Atlantic Ridge (40-$55^{\circ}S$). J. Geophys. Res., 104, 2941-2962. https://doi.org/10.1029/98JB02642
  12. Forsthe, R.D. and E.P. Nelson. 1985. Geological manifestations of ridge collision: Evidence from the Golfo de Penas-Taitao Basin, southern Chile. Tectonics, 4, 477-495. https://doi.org/10.1029/TC004i005p00477
  13. Forsthe, R.D., E.P. Nelson, M.J. Carr, M.E. Kaeding, F. Herve, C. Mpodozis, J.M. Soffia, and S. Harambour. 1986. Pliocene near trench magmatism in southern Chile: A possible manifestation of ridge collision. Geology, 14, 23-27. https://doi.org/10.1130/0091-7613(1986)14<23:PNMISC>2.0.CO;2
  14. Irvine, T.N. and W.R.A. Baragar. 1971. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci., 8, 523-548. https://doi.org/10.1139/e71-055
  15. Johnson, H.P. and R.W. Embley. 1990. Axial seamount: An active ridge axis volcano on the central Juan de Fuca ridge. J. Geophys. Res., 95, 12689-12695. https://doi.org/10.1029/JB095iB08p12689
  16. Klein, E.M. and C.H. Langmuir. 1987. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. J. Geophys. Res., 92, 8089-8115. https://doi.org/10.1029/JB092iB08p08089
  17. Kruz, M.D., A. Le Roex, and H.J.B. Dick. 1998. Isotope geochemistry of the oceanic mantle near the Bouvet triple junction. Geochim. Cosmochim. Acta, 62, 841-852. https://doi.org/10.1016/S0016-7037(97)00383-9
  18. Larter, R.D. and P.F. Barker. 1991. Effects of ridge-trench interaction on Antarctic-Phoenix spreading: Forces on a young subducting plate. J. Geophys. Res., 96, 19583-19607. https://doi.org/10.1029/91JB02053
  19. Le Maitre, R.W., P. Bateman, A. Dudek, J. Keller, M.J. Lameyre Le Bas, P.A. Sabine, R. Schmid, H. Sorensen, A. Streckeisen, A.R. Woolley, and B. Zanettin. 1989. A Classification of Igneous Rocks and Glossary of Terms. Blackwell Science, Inc., London, 193 p.
  20. Livermore, R., J.C. Balanya, A. Maldonado, J.M. Martinez, J. Rodriguez-Fernandez, C.S. Galdeano, J.G. Zaldivar, A. Jabaloy, A. Barnolas, L. Somoza, J. Hernandez-Molina, E. Surinach, and C. Viseras. 2000. Autopsy on a dead spreading center: The Phoenix Ridge, Drake Passage, Antarctica. Geology, 28, 607-610. https://doi.org/10.1130/0091-7613(2000)28<607:AOADSC>2.0.CO;2
  21. Maldonado, A., R.D. Larter, and F. Aldaya. 1994. Fore-arc tectonic evolutions of the South Shetland margin, Ant-arctic Peninsula. Tectonics, 13, 1345-1370. https://doi.org/10.1029/94TC01352
  22. McCulloch, M.T. and J.A. Gamble. 1991. Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet. Sci. Lett., 102, 358-374. https://doi.org/10.1016/0012-821X(91)90029-H
  23. McDougall, I. and R.A. Duncan. 1980. Linear volcanic chains - recording plate motions? Tectonophys., 63, 275-295. https://doi.org/10.1016/0040-1951(80)90117-1
  24. Mullen, E.D. 1983. MnO/$TiO_2/P_2O_5$: A minor element discriminant for basaltic rocks of oceanic environments and its implication for petrogenesis. Earth Planet. Sci. Lett., 62, 53-62. https://doi.org/10.1016/0012-821X(83)90070-5
  25. Nagao, K., A. Ogata, Y.N. Miura, and K. Yamaguchi. 1996. Ar isotope analysis for K-Ar dating using two modified-VG5400 mass spectrometers - I: Isotopic dilution method. J. Mass Spectrom. Soc. Japan, 44, 39-61. https://doi.org/10.5702/massspec.44.39
  26. Nakamura, E., I.H. Campbell, M.T. McCulloch, and S.-S. Sun. 1989. Chemical geodynamics in a back arc region around the Sea of Japan: Implications for the genesis of alkaline basalts in Japan, Korea, and China. J. Geophys. Res., 94, 4634-4654. https://doi.org/10.1029/JB094iB04p04634
  27. Nakamura, N. 1974. Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochim. Cosmochim. Acta, 38, 757-775. https://doi.org/10.1016/0016-7037(74)90149-5
  28. Pearce, J.A. 1982. Trace element characteristics of lavas from destructive plate boundaries. p. 525-547. In: Andesites, ed. by R.S. Thorpe. John Wiley, New York.
  29. Rhodes, J.M., C. Morgan, and R.A. Liias. 1990. Geochemistry of axial seamount lavas: Magmatic relationship between the Cobb hotspot and the Juan de Fuca Ridge. J. Geophys. Res., 95, 12713-12733. https://doi.org/10.1029/JB095iB08p12713
  30. Shaw, D.M. 1970. Trace element fractionation during anatexis. Geochim. Cosmochim. Acta, 34, 237-243. https://doi.org/10.1016/0016-7037(70)90009-8
  31. Steiger, R.H. and E. Jager. 1977. Subcommission on geochronology convension on the use of decay constants in geo- and cosmo-chronology. Earth Planet. Sci. Lett., 36, 359-362. https://doi.org/10.1016/0012-821X(77)90060-7
  32. Sun, S.-S. 1980. Lead isotopic study of young volcanic rocks from mid-ocean ridges, ocean islands and island arcs. Phil. Trans. Royal Soc. London, A297, 409-445.
  33. Sun, S.-S. and W.F. McDonough. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. p. 315-345. In: Magmatism in the Ocean Basins, eds. by A.D. Saunders and M.J. Norry. Geol. Soc. London Spec. Pub., 42. https://doi.org/10.1144/GSL.SP.1989.042.01.19
  34. Tucholke, B.E. and R.E. Houtz. 1976. Sedimentary framework of the Bellingshausen Basin from seismic profiler data. p. 197-227. In: Initial Report of Deep Sea Drilling Project, 35.
  35. Wood, D.A. 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth Planet. Sci. Lett., 50, 11-30. https://doi.org/10.1016/0012-821X(80)90116-8

Cited by

  1. Magmatic evolution of a dying spreading axis: Evidence for the interaction of tectonics and mantle heterogeneity from the fossil Phoenix Ridge, Drake Passage vol.280, pp.1-2, 2011, https://doi.org/10.1016/j.chemgeo.2010.11.002