DOI QR코드

DOI QR Code

Occurrence and Petrogenesis of Phoscorite-Carbonatite Complexes in the Kola Alkaline Province, Arctic

  • Published : 2003.03.31

Abstract

Although phoscorites and carbonatites form only a minor proportion of the earth's crustal rocks, these unusual rocks and their intimate relation are of both academic and economic importance. Rare metal (Nb, Zr, Ta) and REEs mineralizations are in close relation with the differentiation of these phoscorite-carbonatite complexes (PCCs). Recent integrated petrological and geochemical data on PCCs in the Kola Alkaline Province, Arctic, indicate that phoscorites and associated carbonatites are differentiated from common 'carbonated silicate patental magma'. Various hypotheses for the genesis of phoscorite-carbonatite complexes have been proposed during the last half-century. A simple magmatic fractionation scheme can not explain the chemical and mineralogical characteristics of phoscorite and conjugate carbonatite. Instead, the hypotheses involving liquid immiscibility and coeval accumulation processes are favored to explain the mineralogical and geochemical characteristics of phoscorite and carbonatite association.

Keywords

References

  1. Balaganskaya, E.G. 1994. Breccias of the Kovdor phoscorite -carbonatite deposit of magnetite and their geological meaning. Zapiski Vserossiuskogo Mineralogicheskogo Obschestva, 2, 24-36 (in Russian).
  2. Balaganskaya, E., N.I. Krasnova, and R. Liferovich. 2001. Brief description of Kovdor ultramafic-alkaline complex with carbonatites and associated mineral deposits. p. 25-78. In: Formation, Exploration and Exploitation of Economic Deposits Associated with Mantle Carbon: Euro-Carb Workshop Excursion Guide, eds. by S. Gehor, R. Liferovich and F. Wall. University of Oulu, Oulu.
  3. Barker, D.S. and P.J. Wyllie. 1990. Liquid immiscibility in a nephelinite-carbonatite system at 25 kbars and implications for carbonatite origin. Nature, 346, 168-170. https://doi.org/10.1038/346168a0
  4. Borodin, L.S., A.V. Lapin, and A.G. Kharchenkov. 1973. Rare-metal bearing camaforites. Nauka, Moscow, 176 p (in Russian).
  5. Brooker, R.A. 1998. The effect of $CO_2$ saturation on immiscibility between silicate and carbonate liquids: an experimental study. J. Petrol., 39, 1905-1915. https://doi.org/10.1093/petrology/39.11.1905
  6. Epshteyn, Ye.M. and N.A. Danil’chenko. 1988. A spatial-genetic model of the Kovdor apatite-magnetite deposit, a carbonatite complex of the ultramafic, ijolite and carbonatite rock association. Int. Geol. Rev., 30, 981-993. https://doi.org/10.1080/00206818809466077
  7. Ferguson, J. and K.L. Currie. 1971. Evidence of liquid immiscibility in alkaline ultrabasic dikes at Callander Bay, Ontario. J. Petrol., 12, 561-585. https://doi.org/10.1093/petrology/12.3.561
  8. Foley, S.F. 1984. Liquid immiscibility and melt segregation in the alkaline lamprophyres from Labrador. Lithos, 17, 127-137. https://doi.org/10.1016/0024-4937(84)90013-6
  9. Hamilton, D.L., I.G. Freestone, J.B. Dawson, and C.H. Donaldson. 1979. Origin of carbonatites by liquid immiscibility. Nature, 279, 52-54. https://doi.org/10.1038/279052a0
  10. Jones, J.H., D. Walker, D.A. Picket, M.T. Murrel, and P. Beate. 1995. Experimental investigations of the partitioning of Nb, Mo, Ba, Ce, Pb, Ra, Th, Pa and U between immiscible carbonate and silicate liquid. Geochim. Cosmochim. Acta, 59, 1307-1320. https://doi.org/10.1016/0016-7037(95)00045-2
  11. Kjarsgaard, B.A. and D.L. Hamilton. 1988. Liquid immiscibility and the origin of the alkali-poor carbonatite. Mineral. Magazine, 52, 43-55. https://doi.org/10.1180/minmag.1988.052.364.04
  12. Kjarsgaard, B.A. and D.L. Hamilton. 1989. The genesis of carbonatites by immiscibility. p. 388-404. In: Carbonatites. Genesis and Evolution. ed. by K. Bell. Unwin Hyman, London.
  13. Kogarko, L.N., V.A. Kononova, M.P. Orlova, and A.R. Woolley. 1995. Alkaline Rocks and Carbonatites of the World: Part 2. Former USSR. Chapman and Hall, London, 225 p.
  14. Koster Van Groos, A.F. 1975. The effect of high $CO_2$ pressure on alkalic rocks and its bearing on the formation of alkalic ultrabasic rocks and the associated carbonatites. Am. J. Sci., 275, 163-185. https://doi.org/10.2475/ajs.275.2.163
  15. Koster Van Groos, A.F. and P.J. Wyllie. 1963. Experimental data bearing on the role of liquid immiscibility in the genesis of carbonatites. Nature, 199, 801-802. https://doi.org/10.1038/199801a0
  16. Kramm, U., L.N. Kogarko, V.A. Kononova, and H. Vartiainen. 1993. The Kola Alkaline Province of the CIS and Finland: Precise Rb-Sr ages define 380-360 Ma age range for all magmatism. Lithos, 30, 33-44. https://doi.org/10.1016/0024-4937(93)90004-V
  17. Krasnova, N.I. and L.N. Kopylova. 1988. The geological basis for mineral technological mapping at the Kovdor ore deposit. Int. Geol. Rev., 30, 307-319. https://doi.org/10.1080/00206818809466011
  18. Kukharenko, A.A., M.P. Orlova, A.G. Bulakh, E.A. Bagdasarov, O.M. Rimskaya-Korsakova, E.I. Nefedov, G.A. Ilinskiy, A.S. Sergeev, and N.B. Abakumova. 1965. The Caledonian Ultramafic Alkaline Rocks and Carbonatites of the Kola Peninsula and Northern Karelia. Nedra Press, Leningrad, 772 p (in Russian).
  19. Lapin, A.V. 1982. Carbonatite differentiation process. Int. Geol. Rev., 24, 1079-1089. https://doi.org/10.1080/00206818209451046
  20. Lapin, A.V. and H. Vartiainen. 1983. Orbicular and spherulitic carbonatites from Sokli and Vuorijarvi. Lithos, 16, 53-60. https://doi.org/10.1016/0024-4937(83)90034-8
  21. Le Bas, M.J. 1977. Carbonatite-Nephelinite Volcanism. Wiley, London, 347 p.
  22. Le Bas, M.J. 1987. Nephelinites and carbonatites. p. 55-88. In: Alkaline Igneous Rocks. eds. by J.G. Fitton and B.G.J. Upton, Geol. Soc. Spec. Publ., 30, Blackwell, London.
  23. Le Bas, M.J. 1989. Diversification of carbonatite. p. 428-447. In: Carbonatites, Genesis and Evolution. ed. by K. Bell, Unwin Hyman, London.
  24. Lee, H.Y., J.K. Park, and D.H. Hwang. 2002. Petrography of Hongcheon Fe-REE deposits. J. Petrol. Soc. Korea, 11, 90-102 (in Korean).
  25. Lee, M.J. 2002. Mineralogie, petrographie et geochimie de l'association phoscorites-carbonatites dans le conplexe alcalin de Sokli, Finlande. Ph.D. Thesis, Ecole des Mines de Saint-Etienne.
  26. Lee, W.J. and P.J. Wyllie. 1996. Liquid immiscibility in the join $NaAISi_3O_8-CaCO_3$ to 2.5 GPa and the origin of calciocarbonatite magmas. J. Petrol., 37, 1125-1152. https://doi.org/10.1093/petrology/37.5.1125
  27. Lee, W.J. and P.J. Wyllie. 1997. Liquid immiscibility in the join $NaAlSiO_4-NaAlSi_3O_8-CaCO_3$ at 1.0 Gpa: implications for crustal carbonatites. J. Petrol., 38, 457-469. https://doi.org/10.1093/petrology/38.4.457
  28. Le matre, R.W., P. Bateman, A. Dudek, J. Keller, J. Lameyre, M.J. Le Bas, P.A. Sabine, R. Schmid, H. Sorensen, A. Streckeisen, A.R. Woolley, and B. Zanettin. 1989. A Classification of Igneous Rocks and Glossary of Terms. Blackwell, London, 193 p.
  29. Philpotts, A.R. 1982. Compositions of immiscible liquids in volcanic rocks. Contrib. Mineral. Petrol., 80, 201-218. https://doi.org/10.1007/BF00371350
  30. Russell, H.D., S.A. Hiemstra, and D. Groeneveld. 1954. The minearlogy and petrology of the carbonatite at Loolekop, eastern Transvaal. Trans. Geol. Soc. South Africa, 57, 197-208.
  31. Ternovoy, V.I., B.V. Afanasiev, and B.I. Sulimov. 1969. Geology and Perspecting of the Kovdor Vermiculite-Phlogopite Deposit. Nedra, Leningrad, 288 p (in Russian).
  32. Veksler, I.V., T.F.D. Nielsen, and S.V. Sokolov. 1998a. Mineralogy of crystallized melt inclusions from Gardiner and Kovdor ultramafic alkaline complexes: implication for carbonatite genesis. J. Petrol., 39, 2015-2031. https://doi.org/10.1093/petrology/39.11.2015
  33. Veksler, I.V., C. Petibon, G.A. Jenner, A.M. Dorfman, and D.B. Dingwell. 1998b. Trace element partitionning in immiscible silicate-carbonate liquid systems: an initial experimental study using a centrifuge autoclave. J. Petrol., 39, 2095-2104. https://doi.org/10.1093/petrology/39.11.2095
  34. Verhulst, A., E. Balaganskaya, Y. Kirnarsky, and D. Demaiffe. 2000. Petrological and geochemical (trace elements and Sr-Nd isotopes) characteristics of the Paleozoic Kovdor ultramafic, alkaline and carbonatite intrusion (Kola Peninsula, NW Russia). Lithos, 51, 1-25. https://doi.org/10.1016/S0024-4937(99)00072-9
  35. Woolley, A.R. 1989. The spatial and temporal distribution of carbonatites. p. 15-37. In: Carbonatites, Genesis and Evolution. ed. by K. Bell. Unwin Hyman, London.
  36. Yegorov, L.S. 1980. Rocks of the phoscorite series (apatite-magnetite ores) of the Yessey pluton and some general problems of the petrology, classification and nomenclature of the apatite-olivine-magnetite rocks of ijolite-carbonatite complexes. p. 39-60. In: Alkalic Magmatism and the Apatite Potential of Northern Siberia. Leningrad.
  37. Zaitsev, A. and K. Bell. 1995. Sr and Nd isotope data of apatite, calcite and dolomite as indicators of source, and the relationships of phoscorites and carbonatites from the Kovdor massif, Kola Peninsula, Russia. Contrib. Mineral. Petrol., 121, 324-335. https://doi.org/10.1007/BF02688247

Cited by

  1. Phlogopite and tetraferriphlogopite from phoscorite and carbonatite associations in the Sokli massif, Northern Finland vol.7, pp.1, 2003, https://doi.org/10.1007/BF02910260