DOI QR코드

DOI QR Code

Fabrication and Electrical Properties of Conductive Carbon Black filled Poly(Vinyliden Fluoride) Composite

도전성 카본블랙/PVdF 복합재의 제조 및 전기적 특성

  • Kim, Myung-Chan (Department of Chemical Engineering, Myoungji University) ;
  • Moon, Seung-Hwan (Department of Chemical Engineering, Myoungji University) ;
  • Lim, Jae-Seok (Department of Chemical Engineering, Myoungji University) ;
  • Hahm, Hyun-Sik (Department of Chemical Engineering, Myoungji University) ;
  • Park, Hong-Soo (Department of Chemical Engineering, Myoungji University) ;
  • Kim, Myung-Soo (Department of Chemical Engineering, Myoungji University)
  • 김명찬 (명지대학교 공과대학 화학공학과) ;
  • 문승환 (명지대학교 공과대학 화학공학과) ;
  • 임재석 (명지대학교 공과대학 화학공학과) ;
  • 함현식 (명지대학교 공과대학 화학공학과) ;
  • 박홍수 (명지대학교 공과대학 화학공학과) ;
  • 김명수 (명지대학교 공과대학 화학공학과)
  • Published : 2003.09.30

Abstract

Electrical properties of carbon filler/PVdF [poly(vinylidene fluoride)] composite were investigated as a funtion of carbon filler/PVdF ratio in the range of 0.2${\sim}$0.5. Three kinds of comercialzied conductive carbon blacks such as Hiblack 41Y, KE300J, and KE600J, and carbon nanofibers prepared by the catalytic chemical vapor deposition of $C_2H_4$ over Ni-Cu catalysts were used as the carbon fillers. The electrical conductivity of carbon filler/PVdF composites were in the range of 0.65 to 13.5 S/cm depending the fillers' electrical conductivity ranging from 5.6 to 23.1 S/cm. Among the carbon fillers used, the KE600J carbon black showed the highest conductivity both in the composite and filler itself because of its high degree of graphitization due to the high-temperature thermal treatment and its high surface area due to the activation treatment.

Keywords

References

  1. E. Fitzer, "Carbon fibers and theircomposites" Springer, Berlin (1985)
  2. E. Papirer, R. Lacroix, and J.-B. Donnet,Carbon., 34, 1521(1996) https://doi.org/10.1016/S0008-6223(96)00103-0
  3. H. S. Song, MS Dissertation, Myongji Univ., Yongin (2001)
  4. N. M. Rodriguez, A. Chambers, and R. T.K. Baker, Langmuir, 11, 3862 (1995) https://doi.org/10.1021/la00010a042
  5. P. E. Anderson and N. M. Rodhruez, J.Master. Res., 14, 2912 (1999) https://doi.org/10.1557/JMR.1999.0389
  6. B. O. Lee, W. J. Woo, and M. S. Kim,MacromoI. Mater. Eng., 286, 114 (2001) https://doi.org/10.1002/1439-2054(20010201)286:2<114::AID-MAME114>3.0.CO;2-8
  7. J. H. Sinfelt, J. L. Carter, and D. J. CYates, J. Catalysis, 24, 283 (1972) https://doi.org/10.1016/0021-9517(72)90072-3
  8. M. S. Kim, B. O. Lee, W. J. Woo, and K.H. An, Polymer, 25, 367 (2001)
  9. H. Maesh, E. A. Heintz, and F. R.Reinoso, "Introduction to CarbonTechnologies" Alicante, Spain (1997)
  10. M. Kruk, Z. Li, and M. Jaroniec,Lcmgmuir 15, 1435 (1999)
  11. R. W. A. Franco, J. P. Donoso, C. J.Magon, C. B. Rodella, A. O. Florentino,M. J. Saeki, J. M. Pemaut, and A. L. deOliverira, Solid State lonics, 113, 149(1998) https://doi.org/10.1016/S0167-2738(98)00284-7
  12. M. Sumita, K. Sakata, Y. Hayakawa, S.Asai, K. Miyasaka, and M. Tanemura,Colloid Polym. Sci., 270, 134 (1993) https://doi.org/10.1007/BF00652179
  13. M. Reghu, C. Yoon, C. Yang, D. Moses,A. Heeger, and Y. Cao, MacromoIecuIes,26, 7245 (1993)
  14. F. Gubbles, S. Blacher, E. Vanlathem, R.Jerome, R. Deltour, F. Brouers, and PTeyssie, Macromotecutes, 28, 1599 (1995)
  15. M. A. Knackstedt and A. P. Roberts.MacromotecuIes, 29, 1369 (1996)
  16. K. P. Sau, T. K. Chaki, and D. Khastgir,AppL Polym. Sci., 71, 887 (1999)