DOI QR코드

DOI QR Code

Thermochemical Performance Analysis of Liquid Rocket Nozzle

액체로켓 노즐의 열화학적 성능 해석

  • Published : 2003.02.01

Abstract

For a design of rocket engine nozzle, chemical equilibrium analysis which shares the same numerical characteristics with frozen flow analysis can be used as an efficient design tool for predicting maximum thermodynamic performance of the nozzle. 10 this study, a chemical equilibrium flow analysis code was developed for the design of hydrocarbon fueled rocket engines. 10 oder to understand the thermochemical characteristics occurring in a nozzle through the expansion process, such as recombination of chemical components and the accompanying energy recovery, chemical equilibrium flow analysis was carried out for the KSR-III rocket engine nozzles together with frozen flow and non-equilibrium flow analyses. The performance evaluation based on the present KSR-III nozzle flow analyses has provided an understanding of the thermochemical process in the nozzle and additionally, it has confirmed that the newly designed nozzle shape modified to have a reduced exit area ratio is an adequate design for obtaining an increased ground thrust.

로켓 엔진 노즐의 설계에서 동결 유동 해법과 동일한 수치적 특성을 가지는 화학 평형 해석은 노즐의 열역학적 최대 성능을 예측하는 효율적인 설계 도구로 이용될 수 있다. 본 연구에서는 탄화수소 연료 로켓 엔진 설계를 위한 화학적 평형 유동 해석 코드를 개발하였다. 로켓 노즐을 통한 팽창과정에서 일어나는 화학 성분의 재결합 효과와 이에 수반하는 에너지 회복과 같은 열화학적 특징을 이해하기 위하여, KSR-III 로켓 노즐에 대하여 동결유동 해석 및 비평형 유동의 해석과 더불어 화학적 평형 유동 해석을 수행하였다. 유동 해석 결과에 기초한 KSR-III 엔진 성능 평가로부터 노즐에서의 열화학적 특징을 이해할 수 있었으며, 이와 더불어 열화학적인 효과를 고려할 때 출구 면적비를 줄여서 수정된 새로운 노즐 형상이 지상 추력을 증대시키기 위한 적절한 설계임을 확인할 수 있었다.

Keywords

References

  1. Suttton, G.P., Rocket Propulsion Elements 6th Ed., John Wiley & Sons, 1992, New York.
  2. Turns, S.R., An Introduction to Combustion, McGraw-Hill, 1996, New-York.
  3. Barrere, M., Jaumotte, A., Fraeijs de Veubeke, B. and Vandenkerckhove, J., Rocket Propulsion, Elesevier, 1960, Amsterdam.
  4. Cordon, S. and Mc Bride, B.J., "Computer Program for Calculation of Complex Chemical Equilibrium Composition and Applications," NASA RP-1311, Oct., 1994.
  5. Choi, J.-Y., Jeung, I.-S. and Yoon, Y., "Computational Fluid Dynamics Algorithms for Unsteady Shock-Induced Combustion, Part 1: Validation," AIAA Journal, Vol. 38, No. 7, July 2000, pp.1179-1187. https://doi.org/10.2514/2.1112
  6. McBride, B.J., Cordon, S. and Reno, M.A, "Coefficients for Calculating Thermodynamics and Transport Properties of Individual Species," NASA TM-4513, Oct., 1993.
  7. Choi, J.-Y., Oh, S. and Jeung, I.-S., "Correction of Roe's approximate Riemann solver for Non-Ideal Cas Equation of State," AIAA-2002-3293, 32nd AIAA Fluid Dynamics Conference and Exhibit, Jun. 24-27, 2002, St. Louis, Missouri.
  8. GRI-Mech: An Optimized Detailed Chemial Reaction Mechanism for Methane Combustion, GRI Topical Report No. GRI-95/0058, 1995.