생물적 방제균 Pseudomonas chlororaphis O6의 길항 물질 생산 및 유기산 흡수에 관련된 dctA 유전자의 클로닝

Production of Antimicrobial Compounds and Cloning of a dctA Gene Related Uptake of Organic Acids from a Biocontrol Bacterium Pseudomonas Chlororaphis O6

  • 한송희 (전남대학교 농업생명과학대학 응용식물학부, 농업과학기술연구소) ;
  • 남효송 (전남대학교 농업생명과학대학 응용식물학부, 농업과학기술연구소) ;
  • 강범룡 (전남대학교 농업생명과학대학 응용식물학부, 농업과학기술연구소) ;
  • 김길용 (전남대학교 농업생명과학대학 응용생물공학부) ;
  • 구본성 (농촌진흥청 농업생명공학원) ;
  • 조백호 (전남대학교 농업생명과학대학 응용식물학부, 농업과학기술연구소) ;
  • 김영철 (전남대학교 농업생명과학대학 응용식물학부, 농업과학기술연구소)
  • Han, Song-Hee (Division of Applied Plant Science, Inst. of Agri. Sci. and Tech., College of Agriculture and Life Sciences, Chonnam National University) ;
  • Nam, Hyo-Song (Division of Applied Plant Science, Inst. of Agri. Sci. and Tech., College of Agriculture and Life Sciences, Chonnam National University) ;
  • Kang, Beom-Ryong (Division of Applied Plant Science, Inst. of Agri. Sci. and Tech., College of Agriculture and Life Sciences, Chonnam National University) ;
  • Kim, Kil-Yong (Division of Applied Bioscience and Biotechnology, Inst. of Agri. Sci. and Tech., College of Agriculture and Life Sciences, Chonnam National University) ;
  • Koo, Bon-Sung (National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Cho, Baik-Ho (Division of Applied Plant Science, Inst. of Agri. Sci. and Tech., College of Agriculture and Life Sciences, Chonnam National University) ;
  • Kim, Young-Cheol (Division of Applied Plant Science, Inst. of Agri. Sci. and Tech., College of Agriculture and Life Sciences, Chonnam National University)
  • 투고 : 2003.03.25
  • 심사 : 2003.05.16
  • 발행 : 2003.06.30

초록

생물적 방제균인 Pseudomonas chlororaphis O6는 phenazine, protease와 HCN 등과 같은 여러 가지 2차 대사 산물들을 분비하여 식물병원균의 생육을 억제하였다. 또한 O6 균을 밀종자에 접종하였을 때, F. culmorum에 의한 뿌리 썩음병을 방제하는 효과가 있었다. 오이 뿌리 분비액내의 주 유기산은 fumaric acid, malic acid, benzoic acid, succinic acid 였고, 당으로는 glucose와 fructose가 검출되었으며, 유기산의 농도는 당의 농도보다 10배 정도 높았다. O6 균은 오이 뿌리 분비액을 영양원으로 하는 배지에서 생육하였다. 유기산을 흡수하는데 관여할 것으로 추정되는 O6 균의 dctA 유전자는 1,335 bp의 open reading frame을 가지고 있었으며, 444개의 아미노산으로 구성된 약 47 kD 의 pI가 8.2인 단백질을 암호화하였다. DctA 단백질은 10개의 putative trans-membrane domains를 가지고 있어, 세포막에 내재된 단백질로 추정되었다. 오이의 뿌리 분비액 중 유기산이 O6 균의 뿌리 정착에 중요한 물질로 작용한다면 본 연구에 의해 클로닝된 dctA 유전자는 식물 정착이나 생물적 방제균의 유용 형질의 발현을 연구하는데 중요한 유전자로 이용될 수 있을 것이다.

A rhizobacterium Pseudomonas cholororaphis O6 produced several secondary metabolites, such as phenazines, protease, and HCN that may be involved in inhibition of the growth of phytopathogenic fungi. In field study, P. chlororaphis O6 treatment on wheat seed suppressed root rot disease caused by Fusarium culmorum. The major organic acids of cucumber root exudates were fumaric acid, malic acid, benzoic acid, and succinic acid. Glucose and fructose were major monosaccharides in cucumber root exudates. The total amount of organic acids was ten times higher than that of the sugars. P. chlororaphis O6 grew well on cucumber root exudates. The dctA gene of P. chlororaphis O6 consisted of a 1,335 bp open reading frame with a deduced amino acid sequence of 444 residues, corresponding to a molecular size of about 47 kD and pI 8.2. The deduced dctA sequence has ten putative transmembrane domains, as expected of a membrane-embedded protein. Our results indicated that organic acids in cucumber root exudates may play an important role in providing nutrient source for root colonization of biological control bacteria, and the dctA gene of P. chlororaphis O6 may be an important bacterial trait that is involved in utilization of root exudates.

키워드

참고문헌

  1. Alstrom, S. and R.G. Burns. 1989. Cyanide production by rhizobacteria as a possible mechanism of plant growth inhibition. Biol. Fert. Soils 7:232-238 https://doi.org/10.1007/BF00709654
  2. Ausubel, F.M., R. Brent, R. E. Kingston, D.D. Moore, J. G.Seidman, J. A. Smith, and K. Struhl. 1989. Current protocols in Molecular Biology, John Wiley Sons NewYork
  3. Chaboud, A. 1983. Isolation, Purification, and chemicalcomposition of maize root cap slime. Plant Soil 73:395-402 https://doi.org/10.1007/BF02184316
  4. Defago, G., C.H. Berling, 0. Burger, D. Hass, G. Kahr, CKeel, C. Voisard, P. Wirthner, and B. Wutrich. 1990 Suppression of black root rot of tobacco and other root disease by strains of Pseduomonas fluorescens; potential applications and mechanisms. D. Hornby, ed. CABInternational, Walling Ford, U. K.
  5. Delaney, S.M., D.V. Mavrol, R.F. Bonsall, and L.SThomashow. 2000. phzO, a gene for biosynthesis of 2-hydroxylated phenazine compounds in Pseudomonas aureofaciens 30-84. J. Bactenol. 183:318-327
  6. El-Hamalawi, Z.A., and D.C. Erwin. 1986. Components inalfalfa root extract and root exudates that increaseoospore germination of Phytophthora megasperma f. sp.medicaginis. Phytopathol. 96:508-513
  7. Gamliel, A., and J. Katan. 1992. Influence of seed and rootexudates on fluorescent pseudomonads and fungi insolarized soil. Phytopathol. 82:320-327 https://doi.org/10.1094/Phyto-82-320
  8. Giblin, L., B. Boesten, S. Turk, P. Hooykaas, and F.O'Gara. 1995. Signal transduction in the Rhizobiummelilotti dicarboxylic acid transport system. FEMSMicrobiol. 126:25-30
  9. Johnson, J.F., C.P. Vance, and D.L. Allan. 1996.Phophorus deficiency in Lupinus albus, altered lateralroot development and enhanced expression ofphosphoenolpyruvate carboxylase. Plant Physiol. 112:3141
  10. Kloepper, J.W., J. Leong, M. Teintze, and M.N. Schroth.1980. Enhanced plant growth by siderophores producedby plant growth-promoting rhizobacteria. Nature286:885-886 https://doi.org/10.1038/286885a0
  11. Kropp, B.R., E. Thomas, J.I. Pounder, and A.J. Anderson.1996. Increased emergence of spring wheat after inoculation with Pseudomonas chlororaphis isolate 2E3under field and laboratory condidons. Biol. Pertil. Soils23:200-206 https://doi.org/10.1007/BF00336064
  12. Liddell,C.M. 1985. The comparative pathogenicity of Fusarium gramineraum group I, Fusarium culmorumand Fusarium crookwellnese as crown, foot and root ropathogens of wheat. Australas. Plant Path. 14:29-32 https://doi.org/10.1071/APP9850029
  13. Lugtenberg, B.J.J., L. Dekkers, and G.V. Bloemberg. 2001 Molecular determinants of rhizosphre colonization by pseudomonas. Annu. Rev. Phytopathol. 39:461-490 https://doi.org/10.1146/annurev.phyto.39.1.461
  14. Lugtenberg, B.J., L.V. Kravchenko, and M. Simons. 1990.Tomato and root exudate sugars: composition, utilizationby Pseudomonas biocontrol strains and role inrhizosphere colonization. Environ. Microbiol. 1:439-446 https://doi.org/10.1046/j.1462-2920.1999.00054.x
  15. Mozafar, A., F. Duss, and J.J. Oertli. 1992. Effect ofPseudomonas fluorescenson the root exudates of twotomato mutants differently sensitive to Fe chlorosis. PlantSoil 144:167-176
  16. O'Sullivan, D.J., and F. O'Gara, 1992. Traits of fluorescentPseudomonas spp. involved in suppression of plant rootpathogens. Microbiol. Rev. 56:662-676
  17. Pierson III, L.S., and L.S. Thomashow, 1992. Cloning andheterologus expression of the phenazine biosyntheticlocus from Pseudomonas aureofaciens 30-84. Mol. PlantMicrobe In. 5:330-339
  18. Reddi, T.K.K., Y.P. Khudyakov, and A.V. Borovkov,1969. Pseudomonas fluorescens strain 26-0, a producerof phytotoxic substances. Microbiol. 38:909-913
  19. Sambrook, J., E.F Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor,New York.
  20. Simons, M., H.P. Permentier, L.A. de Weger, C.A.Wijffelman, and B.J.J. Lugtenberg. 1997. Amino acidsynthesis is necessary for tomato root colonization by Pseudomonas fluorescens strain WCS365. Mol. PlantMiciobe In. 10:102-106
  21. Stowers, M.D. 1985. Carbon metabolism in Rhizobiumspecies. Ann. Rev. Microbiol. 39:89-108 https://doi.org/10.1146/annurev.mi.39.100185.000513
  22. Thomashow, L.S., and D.M. Weller, 1988. Role of a phenazine antibiotic from Pseudomonas fIuorescens in biological control of Gaeumannomyces eraminis vartridci. J. Bactehol. 170:3499-3508.
  23. Vilchez, S., I. Molina, C. Ramos, and J.L. Ramos. 2000.Proline catabolism by Pseudomonas putida: cloning,characterization, and expression of the put genes in thepresence of root exudates. J. Bacteriol. 182:91-99 https://doi.org/10.1128/JB.182.1.91-99.2000
  24. Yoshikawa, M., N. Mirai, K. Wakabayashi, H. Sugikakiand H. Iwamura. 1993. Succinic acid and lactic acids asplant growth promoting compounds produced byrhizosphere Pseudomonas putida. Can. J. Microbiol39:1150-1154
  25. Wiese, M.V. 1977. Compendium of wheat diseases, the American Phytopathological Society, St. Paul.