Hydrogen-storage Properties of CoO-Added Mg by Reactive Grinding

반응성분쇄에 의해 CoO를 첨가한 Mg의 수소저장특성

  • Song, Myoungyoup (Division of Advanced Materials Engineering, Research Center of Industrial Technology, Engineering Research Institute, Chonbuk National University) ;
  • Lee, Dongsub (Division of Advanced Materials Engineering, Research Center of Industrial Technology, Engineering Research Institute, Chonbuk National University)
  • 송명엽 (전북대학교 신소재공학부 공업기술연구센터) ;
  • 이동섭 (전북대학교 신소재공학부 공업기술연구센터)
  • Published : 2003.12.30

Abstract

We tried to improve the $H_2$-sorption properties of Mg by mechanical grinding under $H_2$ (reactive grinding) with CoO. The sample Mg+10wt.%CoO as prepared absorbs 1.25wt.% hydrogen and the activated sample absorbs 2.39wt.% hydrogen for 60min at 598K, $11.2barH_2$. The reactive grinding of Mg with CoO increases the $H_2$-sorption rates by facilitating nueleation(by creating defects on the surface of the Mg particles and by the additive), by making cracks on the surface of Mg particles and reducing the particle size of Mg and thus by shortening the diffusion distances of hydrogen atoms. Hydriding-dehydriding cycling increases the $H_2$-sorption rates by making cracks on the surface of Mg particles and reducing the particle size of Mg.

Keywords

Acknowledgement

Supported by : Chonbuk National University

References

  1. A. Vose, Metal Hydrides, U.S Patent 2 Vol. 944, 1961, p. 587
  2. J. J. Reilly and R. H. Wiswall, Inorg. Chem Vol. 6, No. 12, 1967; p. 2220 https://doi.org/10.1021/ic50058a020
  3. J. J. Reilly and R. H. Wiswall Jr, Inorg. Chem, Vol. 7, No. 11, 1968; p. 2254-2256 https://doi.org/10.1021/ic50069a016
  4. D. L. Douglass, Metall. Trans, A6, 1975, p. 2179
  5. M. H. Mintz, Z. Gavra and Z. Hadari, J. Inorg. Nucl. Chem., Vol. 40, No. 12, 1978, p. 765-768 https://doi.org/10.1016/0022-1902(78)80147-X
  6. M. Pezat, A. Hbika, B. Darriet and P. Hagenmuller, French Anvar Patent 78 203 82, 1978, Mater. Res. Bull Vol. 14, 1979, p. 377
  7. M. Pezat, B. Darriet and P. Hagenmuller, J. Less-Common Met Vol. 74, 1980, p. 427 https://doi.org/10.1016/0022-5088(80)90181-2
  8. Q. Wang, J. Wu, M. Au and L. Zhang, in Hydrogen Energy Progress V, Proceedings 5th World Hydrogen Energy Conference, Toronto, Canada, Vol. 3, July 1984, edited by T. N. Vezirolu and J. B. Taylor (Pergamon, New York) pp. 1279-1290
  9. E. Akiba, K. Nomura, S. Ono and S. Suda, Int. J. Hydrogen Energy, Vol. 7, No. 10, 1982, p. 787-791 https://doi.org/10.1016/0360-3199(82)90069-6
  10. J. M. Boulet and N. Gerard, J. Less-Common Met., Vol. 89, No. 12, 1983, p. 151 https://doi.org/10.1016/0022-5088(83)90261-8
  11. B. Tanguy, J. L. Soubeyroux, M. Pezat, J. Portier and P. Hagenmuller, Mater. Res. Bull, Vol. 11, 1976, p. 1441 https://doi.org/10.1016/0025-5408(76)90057-X
  12. F. G. Eisenberg, D. A. Zagnoli and J. J. Sheridan B, J. Less-Conunon Met, Vol. 74, 1980, p. 323-331 https://doi.org/10.1016/0022-5088(80)90170-8
  13. M. Y. Song, J. Mater. Sci 1995;30:1343 https://doi.org/10.1007/BF00356142
  14. M.Y. Song, E.I. Ivanov, B. Darriet, M. Pezat and P. Hagenmuller, Int. J. Hydrogen Energy, Vol. 10, No. 3, 1985, p. 169-178 https://doi.org/10.1016/0360-3199(85)90024-2
  15. M.Y. Song, E. I. Ivanov, B. Darriet, M. Pezat and P. Hagenmuller, J. Less-Common Met, Vol. 131, 1987, p. 71 https://doi.org/10.1016/0022-5088(87)90502-9
  16. M.Y. Song, Int. J. Hydrogen Energy, Vol. 20, No. 3, 1995, p. 221-227 https://doi.org/10.1016/0360-3199(94)E0024-S
  17. J-L. Bobet, E. Akiba, Y. Nakamura and B. Darriet, Iit. J. Hydrogen Energy 2000, Vol. 25, 2000, p. 987 https://doi.org/10.1016/S0360-3199(00)00002-1
  18. M.Y. Song, D.S. Ahn, I.H. Kwon, H.J. Ahn, Metals and Materials International, Vol. 5, No. 5, 1999, p. 485 https://doi.org/10.1007/BF03026163