DOI QR코드

DOI QR Code

Improved Antigen Delivery Systems with PLGA Microsphere for a Single-Step Immunization

PLGA 미립구를 이용한 새로운 단회 접종 항원 전달 시스템의 개발

  • Published : 2004.02.20

Abstract

A promising approach to the development of a new single-step vaccine, which would eliminate the requirement for multiple injections, involves the encapsulation of antigens into microspheres. Biodegradable poly(lactide-co-glycolide) (PLGA) microspheres gave us a bright insight for controling antigen release in a pulsatile fashion, thereby mimicking two or tree boosting injections. However, in spite of the above merits, the level of immunization induced by a single-shot vaccination is often lower tan two doses of alum-adsorbed antigen. Therefore, optima modification of the microsphere is essential for the development of single-step vaccines. In the review, we discuss the stability of antigen in microsphere, safety and non-toxic in human and encapsulation technology. Also, we attempted to outline relevant physicochemical properties on the immunogenicity of microsphere vaccine and attainment of pulsatile release pater by combination of different microsphere, as well as to analyze immunological data associated with antigen delivery by microsphere. Although a lot of variables are related to the optimized microsphere formulation, we could conclude that judicious choice of proper polymer type, adjustment of particles size, and appropriate immunization protocol along with a suitable adjuvant might be a crucial factor for the generation of long-lasting immune response from a single-step vaccine formulation employing PLGA microsphere.

Keywords

References

  1. M. Singh and D.T. O'Hagan, Recent advances in vaccine adjuvants, Phann. Res., 19, 715-728 (2002) https://doi.org/10.1023/A:1016104910582
  2. M. Zahiru, L Khan, lP. Opdebeeck and LG. Tucker, Immunopotentiation and delivery systems for antigens for single-step immunization: Recent trends and progress, Phann. Res., 11,2-10 (1994) https://doi.org/10.1023/A:1018977107167
  3. S. Wright and L. Huang, Antibody-directed liposomes as drug delivery vehicles, Adv. Drug Deliv. Rev., 3, 343-389 (1989) https://doi.org/10.1016/0169-409X(89)90027-6
  4. N. van Rooijen, Liposomes as carrier and immunoadjuvant of vaccine antigens, Adv. Biotechnol. Process, 13, 255-279 (1990)
  5. CR. Alving, Liposomes as carriers of antigens and adjuvants, J. Immunol. Methods, 140, 1-13 (1991) https://doi.org/10.1016/0022-1759(91)90120-5
  6. D.E Nixon, C. Hioe, P.D. Chen, Z. Bian, P. Kuebler, M.L. Li, H. Aiu, X.N. Li, M. Singh, l Richardson, P. Mcgee, T. Zamb, W Koff, cv Wang and D.T. OHagan, Synthetic peptides entrapped in microparticles can elicit cytotoxic T cell activity, Vaccine, 14, 1523-1530 (1996) https://doi.org/10.1016/S0264-410X(96)00099-0
  7. Kl Maloy, AM. Donachie, D.T. OHagan and AM. Mowat, Induction of mucosal and systemic immune responses by immunization with albumin entrapped in poly(lactide-co-glycloide) microparticles, Immunology, 81, 661-667 (1994)
  8. A. Moore, P. McGuirk, S. Adams, We. Jones, lP. McGee, D.T. OHagan and KH. Mills, Immunization with a soluble recombinant HIV protein entrapped in biodegradable microparticles induces HIV-specific CD8+ cytotoxic T lymphocytes and $CD4^+$ Thl cells, Vaccine, 13, 1741-1749 (1995) https://doi.org/10.1016/0264-410X(95)00184-3
  9. EJ. Frazza and E.E. Schmitt, A new absorbable study, J. Biomed. Mater. Res. Symp., 1, 43-52 (1971)
  10. lM. Brady, D.E. Cutright, R.A Miller and G.e. Battestone, Resorption rate, route of elimination and ultra structure of the implant site of polylactic acid in abdominal wall of the rat, J. Biomed. Mater. Res., 7, 155-173 (1973) https://doi.org/10.1002/jbm.820070204
  11. J. Hanes, J. L. Cleland and R Langer, New advances in microsphere-based single-dose vaccines, Adv. Drug Deliv: Rev., 28, 97-119 (1997) https://doi.org/10.1016/S0169-409X(97)00053-7
  12. C. Thomasin, G. Corradin, Y. Men, H.P. Merkle and B. Gander, Tetanus toxoid and synthetic malaria antigen containing poly(lactide)/poly(lactide-co-glycolide) microspheres : Importance of polymer degradation and antigen release for immune response, J. Control. Release, 41, 131-145 (1996) https://doi.org/10.1016/0168-3659(96)01363-6
  13. C.D. Partidos, P. Vohra, D. Jones, G. Farrar and MW. Steward, CTL responses induced by a single immunization with peptide encapsulated in biodegradable microparticles, J. Immunol. Methods, 206, 143-151 (1997) https://doi.org/10.1016/S0022-1759(97)00102-6
  14. V.R. Sinha and A Trehan, Biodegradable microspheres for protein delivery, J. Control. Release, 90, 261-280 (2003) https://doi.org/10.1016/S0168-3659(03)00194-9
  15. M. Higaki, Y. Azechi, T. Takase, R Igarashi, S. Nagahara, A Sano, K Fujiko, N. Nakagawa, e. Aizawa and Y. Mizushima, Collagen minipellet as a controlled release delivery system for tetanus and diphtheria toxoid, Vaccine, 19, 3091-3096 (2001) https://doi.org/10.1016/S0264-410X(01)00039-1
  16. M. Diwan, T.K Khar and G.P. Talwar, Tetanus toxoid loaded preformed microspheres of crossed linked dextran, Vaccine, 19, 3853-3859 (2001) https://doi.org/10.1016/S0264-410X(01)00140-2
  17. G.F.A Kersten, D. Donders, A Akkermans and E.C.Beuvery, Single shot vaccine with tetanus toxoid in biodegradable microsphere protects mice despite acidinduced denaturation of the antigen, Vaccine, 14, 1627-1632 (1996) https://doi.org/10.1016/S0264-410X(96)00145-4
  18. D.T. OHagan, D. Rahman, lP. McGee, H. Jeffery, M.C.Davies, P. Williams, S.S. Davis and SJ. Challacombe, Biodegradable microparticles as controlled release antigen delivery systems, Immunology, 73, 239-242 (1991)
  19. M. Singh, A. Singh and G.P. Talwar, Controlled delivery of diphtheria toxoid using biodegradable poly(D,L-lactide) microcapsules, Pharm. Res., 8, 958-961 (1991) https://doi.org/10.1023/A:1015832302605
  20. M.J. Alonso, S. Cohen, T.G. Park, RK Gupta, G.R. Siber and R Langer, Determinants of release rate of tetanus vaccine from polyester microspheres, Phann. Res., 10, 945-953 (2003)
  21. lP. McGee, M. Singh, X.M. Li, H. Qui and D.T. OHagan, The encapsulation of a model protein in poly(lactide-coglycolide) microparticles of various sizes: an evaluation of process reproducibility, J. Microencap., 14, 197-203 (1997) https://doi.org/10.3109/02652049709015333
  22. lL. Cleland and A.lS. Jones, Stable formulations of ecombinant human growth hormone and interferon for microencapsulation in biodegradable microspheres, Phann. Res., 13, 1464-1475 (1996) https://doi.org/10.1023/A:1016063109373
  23. AK. Hilbert, U. Fritzsche and T. Kissel, Biodegradable microspheres containing influenza A vaccine: Immune response in mice, Vaccine, 17, 1065-1073 (1999) https://doi.org/10.1016/S0264-410X(98)00323-5
  24. A.B. Sasiak, B. Bolgiano, D.T. Crane, D.E Hockley, M.J.Corbel and D. Sesardic, Comparison of in vitro and in vivo methods to study stability of PLGA microencapsulated tetanus toxoid vaccines, Vaccine, 19, 694-705 (2001) https://doi.org/10.1016/S0264-410X(00)00266-8
  25. D.T. O'Hagan, M. Ugozzoli, J. Barackman, M. Singh, J.Kazzaz, K. Higgins, T.e. Vancott and G.S. Ott, Microparticles in MF59, a potent adjuvant combination for a recombinant protein vaccine against HIV-1, Vaccine, 18, 1793-1801 (2000) https://doi.org/10.1016/S0264-410X(99)00522-8
  26. P. Johansen, Y Men, R Audran, G. Corradin, H.P. Merkle and B. Gander, Improving stability and release kinetics of microencapsulated tetanus toxoid by co-encapsulation of additives, Pharm. Res., 15, 1103-1110 (1998) https://doi.org/10.1023/A:1011998615267
  27. R. Audran, Y. Men, P. Johansen, B. Gander and G. Corradin, Enhanced immunogenicity of microencapsulated tetanus toxoid with stabilizing agents, Pharm. Res., 15, 1111-1116 (1998) https://doi.org/10.1023/A:1011950732105
  28. D.K.L. Xing, D.T. Crane, B. Bolgiano, MJ. Corbel, e. Jones and D. Sesardic, Physicochemical and immunological studies on the stability of free and microsphere-encapsulated tetanus toxoid in vitro, Vaccine, 14, 1205-1213 (1996) https://doi.org/10.1016/S0264-410X(96)00032-1
  29. E.C. Lavelle, M.K. Yeh, A.G.A Coombes and S.S. Davis, The stability and immunogenicity of a protein antigen encapsulated in biodegradable micropartic1es based on blends of lactide polymers and polyethylene glycol, Vaccine, 17, 512-529 (1999) https://doi.org/10.1016/S0264-410X(98)00229-1
  30. A $S\acute{a}nchez$, B. Villamayor, Y Guo, J. McIver and M.J.Alonso, Formulation strategies for the stabilization of tetanus toxoid in polytlactide-co-glycolide) microspheres, Int. J.Pharm., 185, 255-266 (1999) https://doi.org/10.1016/S0378-5173(99)00178-7
  31. A.-C. Chang and R.K. Gupta, Stabilization of tetanus toxoid in poly(DL-lactic-co-glycolic acid) microspheres for the controlled release of antigen, j. Pharm. Sci., 85, 129-132 (1996) https://doi.org/10.1021/js950365v
  32. J.A. Reynolds, D.G. Harrington, ci, Crabbs, C.J. Peters and N.R. Di Luzio, Adjuvant activity of a novel metabolizable lipid emulsion with inactivated viral vaccines, Infect. Immun., 28, 937-943 (1980)
  33. M. Brugh, J.D. Stone and H.W Lupton, Comparison of inactivated Newcastle disease viral vaccines containing different emulsion adjuvants, Am. J. Vet. Res., 44, 72-75 (1983)
  34. W Lu and T.G. Park, Protein release from polytlactic-coglycolic acid) microspheres: protein stability problems, J. Pharm. Sci. Tech., 49, 13-19 (1995)
  35. T.G. Park, W Lu and G. Crotts, Importance of in vitro experimental conditions on protein release kinetics, stability and polymer degradation on protein encapsulated poly(D,Llactic acid-eo-glycolic acid) microspheres, 1. Control. Release, 33, 221-235 (1995)
  36. D.T. OHagan, 1.P. McGee, M. Lindblad and J. Holmgren, Cholera toxin B subunit retains antigenicity and immunogenicity following encapsulation in biodegradable microparticles, Int. J. Pharm., 119, 251-255 (1995) https://doi.org/10.1016/0378-5173(95)00046-L
  37. D.T. O'Hagan, J.P. McGee, R Boyle, D. Gumaer, X.M. Li, B. Potts, C.Y. Wang and We. Koff, The preparation, characterization and pre-clinical evaluation of an orally administered HIV-1 vaccine, consisting of a branched peptide immunogen entrapped in controlled release microparticles, J. Control. Release, 36, 75-84 (1995) https://doi.org/10.1016/0168-3659(95)00052-A
  38. C.G. Pitt, M.M. Gratzl, G.L. Kummel, J. Surles and A Schindler, Aliphatic polyesters, The degradation of poly(DLlactide) and their copolymers in vivo, Biomaterials, 2, 215224 (1981) https://doi.org/10.1016/0142-9612(81)90060-0
  39. R.S.R. Murthy, Biodegradable polymers: In Controlled and Novel Drug Delivery, N.K. Jain (Ed.), CBS Publishers and Distributors, New Delhi, India, pp. 27-51 (1997)
  40. D.H. Lewis, Controlled release of bioactive agents from lactide/glycolide polymers: In Biodegradable Polymers as Drug Delivery System, Drugs and, M. Chasin, R and Langer (Eds.), Marcel Dekker, New York, U.S.A., pp. 9-41 (1990)
  41. D.H. Jones, B.W McBride and G.H. Farrar, Poly (lactide-coglycolide)microencapsulation of vaccine antigens, Biotechnology, 44, 29-36 (1996) https://doi.org/10.1016/0168-1656(95)00097-6
  42. S. Takada, Y, Yamagata, M. Misaki, K. Taira and T. Kurokawa, Sustained release of human growth hormone from microcapsules prepared by a solvent evaporation technique, J. Control. Release, 88, 229-242 (2003) https://doi.org/10.1016/S0168-3659(02)00494-7
  43. R.K. Gupta, A.C. Chang, P. Griffin, Y,Y. Guo and G.R. Siber, Determination of protein loading in biodegradable polymer microspheres containing tetanus toxoid, Vaccine, 15, 672-678 (1997) https://doi.org/10.1016/S0264-410X(96)00233-2
  44. D.T. O'Hagan, M. Singh and RK. Gupta, Poly(lactide-coglycolide) microparticles for the development of single-dose controlled-release vaccines, Adv. Drug Deliv. Rev., 32, 225-246 (1998) https://doi.org/10.1016/S0169-409X(98)00012-X
  45. AM. Carcaboso, RM. Hernandez, M. Igartua, A.R Gascon, J.E. Rosas, M.E. Patarroyo and J.L. Pedraz, Immune response after oral administration of the encapsulated malaria synthetic peptide SPf66, Int. J. Pharm., 260, 273-282 (2003) https://doi.org/10.1016/S0378-5173(03)00266-7
  46. T.L. Bowersock, H. HogenEsch, M. Suckow, R.E. Porter, R Jackson, H. Park and K. Park, Oral vaccination with alginate microsphere systems, J. Control. Release, 39, 209-220 (1996) https://doi.org/10.1016/0168-3659(95)00155-7
  47. T.L. Bowersock and S. Martin, Vaccine delivery to animals, Adv. Drug Deliv. Rev., 38, 167-194 (1999) https://doi.org/10.1016/S0169-409X(99)00015-0
  48. T. Kissel, vx. Li, e. Volland, S. Gorich and R Koneberg, Parenteral protein delivery systems using biodegradable polyesters of ABA block structure, containing hydrophobic poly(lactide-co-glycolide) A blocks and hydrophilic poly (ethylene oxide) B blocks, J. Control. Release, 39, 315-326 (1996) https://doi.org/10.1016/0168-3659(95)00163-8
  49. Y. Ogawa, H. Okada, Y.Yamamoto and T. Shimamoto, A new technique to efficiently entrap leuprorelide acetate into microcapsules of poly(lactic acid) or copoly(lactic/glycolic) acid, Chern. Phann. Bull., 36, 1095-1108 (1988) https://doi.org/10.1248/cpb.36.1095
  50. R. Jalil and I.R Nixon, Biodegradable poly(lactic acid) and poly(lactide-co-glycolide) microcapsules : Problems associated with preparative techniques and release properties, J. Microencapsul., 7, 297-325 (1990) https://doi.org/10.3109/02652049009021842
  51. K. Masters, Spray-drying fundamentals process stages and lay-outs: In Spray-drying handbook. Nsters K, (Ed.), Longman Scientific and Technical, Essex, Ll.K, pp. 23-66 (1994)
  52. B. Baras, M. Benoit, O. Poulain-Godefroy, A Schacht, A Capron, I. Gillard and G. Riveau, Vaccine properties of antigens entrapped in microparticles produced by spraydrying technique and using various polyester polymers, Vaccine, 18, 1495-1505 (2000) https://doi.org/10.1016/S0264-410X(99)00427-2
  53. B. Baras, M.A Benoit and I. Gillard, Parameters influencing the antigen release from spray-dried poly(DL-lactide) microparticles, Int. J. Pharm., 200, 133-145 (2000) https://doi.org/10.1016/S0378-5173(00)00363-X
  54. M. Murillo, C. Gamazo, M. Gofii, J. Irache and M. BlancoPrieto, Development of microparticles prepared by spraydrying as a vaccine delivery system against brucellosis, Int. J. Phann., 242, 341-344 (2002) https://doi.org/10.1016/S0378-5173(02)00212-0
  55. A.I. Bot, D.J. Smith, S. Bot, L. Dellamary, T.E. Tarara, S. Harders, W. Phillips, I.G. Weers and C.M. Woods, Receptormediated targeting of spray-dried lipid particles co-formulated with immunoglobulin and loaded with a prototype vaccine, Phann. Res., 18, 971-979 (2001) https://doi.org/10.1023/A:1010988311640
  56. N. Clarke, K. OConnor and Z. Ramtoola, In fluence of formulation variables on the morphology of biodegradable microparticles prepared by spray-drying, Drug Dev. Ind. Phann., 24, 169-174 (1998) https://doi.org/10.3109/03639049809085602
  57. A.G.A. Coombes, M.K. Yeh, E.C. Lavelle and S.S Davis, The control of protein release from poly(DL-lactide co-glycolide) microparticles by variation of the external aqueous phase surfactant in the water-in oil-in water method, J. Control. Release, 52, 311-320 (1998) https://doi.org/10.1016/S0168-3659(98)00006-6
  58. M.K. Yeh, A.G.A. Coombes, P.G. Jenkins and S.S. Davis, A novel emulsification-solvent extraction technique for production of protein loaded biodegradable microparticles for vaccine and drug delivery, J. Control. Release, 33, 437-445 (1995) https://doi.org/10.1016/0168-3659(94)00123-C
  59. I.Y. Song, S.H. Song, WH. Song, S.W Cho and Y.W Choi, Particle size control of poly(lactide-co-glycolide) microspheres for oral antigen delivery system, J. Kor. Phann. Sci., 29, 315-321 (1999)
  60. S.W Cho, S.H Song and Y.W Choi, Effects of solvent selection and fabrication method on the characteristics of biodegradable poly(lactide-co-glycolide) microspheres containing ovalbumin, Arch. Phann. Res., 23, 385-390 (2000) https://doi.org/10.1007/BF02975452
  61. P. Johansen, B. Gander, H.P. Merkle and D. Sesardic, Ambiguities in the preclinical quality assessment of microparticulate vaccines, Trends Biotechnol., 18, 203-211 (2000) https://doi.org/10.1016/S0167-7799(00)01437-2
  62. R.S. Raghuvanshi, Y.K. Katare, K. Lalwani, M.M. Ali, O. Singh and AK. Panda, Improved immune response from biodegradable polymer particle entrapping tetanus toxoid by use of different immunization protocol and adjuvants, Int. J. Pharm., 245, 109-121 (2002) https://doi.org/10.1016/S0378-5173(02)00342-3
  63. P. Johansen, E Estevez, R Zurbriggen, H.P. Merkle, R Gliick, G. Corradin and B. Gander, Towards clinical testing of a single-administration tetanus vaccine based on PLAlPLGA microspheres, Vaccine, 19, 1047-1054 (2001) https://doi.org/10.1016/S0264-410X(00)00343-1
  64. M. Singh, X.-M. Li, H. Wang, J.P. McGee, T. Zamb, W. Koff, C.Y. Wang and D.T. O'hagan, Controlled release microparticles as a single dose diphtheria toxoid vaccine : Immunogenicity in small animal models, Vaccine, 16, 346-352 (1998) https://doi.org/10.1016/S0264-410X(97)80912-7
  65. P. Johansen, L. Moon, H. Tamber, H.P. Merkle, B. Gander and D. Sesardic, Immunogenicity of single-dose diphtheria vaccines based on PLAlPLGA microspheres in guinea pigs, Vaccine, 28, 209-215 (2000)
  66. J.E. Rosas, J.L. Pedraz, RM. Hernandez, AR Gascon, M. Igartua, E Guzman, R Rodriguez, J. Cortes and M.E. Patarroyo, Remarkably high antibody levels and protection against P. falciparum malaria in Aotus monkeys after a single immunization of SPf66 encapsulated in PLGA microspheres, Vaccine, 20, 1707-1710 (2002) https://doi.org/10.1016/S0264-410X(01)00508-4
  67. M. Singh, X.-M. Li, H. Wang and D.T. O'Hagan, Immunogenicity and protection in small animal models with controlled-release tetanus toxoid microparticles as a singledose vaccine, Infect. Immun., 1716-1721 (1997)
  68. D.T. O'Hagan, G.S. Ott and G.Y. Nest, Recent advances in vaccine adjuvants: The development of MF59 emulsion and polymeric microparticles, Molecular Medicine Today, 3, 6975 (1997) https://doi.org/10.1016/S1357-4310(96)10058-7
  69. P. Johansen, Y. Men, H.P. Merkle and B. Gander, Revisiting PLAlPLGA microspheres: An analysis of their potential in parenteral vaccination, Eur. J. Phann. Biophann., 50, 129-146 (2000) https://doi.org/10.1016/S0939-6411(00)00079-5
  70. D.T. O'Hagan, H. Jeffery and S.S. Davis, Long term antibody responses in mice following subcutaneous immunization with ovalbumin entrapped in biodegradable microparticles, Vaccine, 11, 965-969 (1993) https://doi.org/10.1016/0264-410X(93)90387-D
  71. S. Cohen, T. Yoshioka, M. Lucarelli, L.H. Hwang and R Langer, Controlled delivery systems for protein based on poly(lactic/glycolic acid) microspheres, Pharm. Res., 8, 713-720 (1991) https://doi.org/10.1023/A:1015841715384
  72. I. Jabbal-Gill, W Lin, P. Jenkins, P. Watts, M. Jimenez, L. mum, S.S. Davis, I.M. Wood, D. Major, P.D. Minor, X. Li, E.C. Lavelle and AG.A Coombes, Potential of polymeric lamellar substrate particles (PLSP) as adjuvants for vaccines, Vaccine, 18, 238-250 (1999) https://doi.org/10.1016/S0264-410X(99)00195-4
  73. P. Johanse, G. Corradin, H.P. Merkle and B. Gander, Release of tetanus toxoid from adjuvants and PLGA microspheres: How experimental set-up and surface adsorption fool the pattern, J. Control. Release, 56, 209-217 (1998) https://doi.org/10.1016/S0168-3659(98)00084-4
  74. E-L. Mi, S.-S. Shyu, C.-T. Chen and J.-Y. Schoung, Porous chitosan microsphere for controlling the antigen release of Newcastle disease vaccine : preparation of antigen-adsorbed microsphere and in vitro release, Biomaterials, 20, 1603-1612 (1999) https://doi.org/10.1016/S0142-9612(99)00064-2
  75. A.G.A Coombes, E.C. Lavelle, P.G. Jenkins and S.S. Davis, Single dose, polymeric, microparticle-based vaccines: The influence of formulation conditions on the magnitude and duration of the immune response to a protein antigen, Vaccine, 14, 1429-1438 (1996) https://doi.org/10.1016/S0264-410X(96)00077-1
  76. R.K. Gupta, H. Alroy, M.H. Alonso, R Langer and GR Siver, Chronic local tissue reactions, long term immunogenicity and immunologic proming of mice and guinea pigs to tetanus toxoid encapsulated in biodegradable polymer microspheres composed of poly lactide-co-glycolide polymers, Vaccine, 15, 1716-1723 (1997) https://doi.org/10.1016/S0264-410X(97)00116-3
  77. H. Rafati, E.C. Lavelle, AG.A. Coombes, S. Stolnik, J. Holland and S.S. Davis, The immune response to a modelantigen associated with PLG microparticles prepared using different surfactants, Vaccine, 15, 1888-1897 (1997) https://doi.org/10.1016/S0264-410X(97)00134-5
  78. R. Nakaoka, Y. Inoue, Y Tabata and Y.Ikada, Size effect on the antibody production induced by biodegradable microspheres containing antigen, Vaccine, 14, 1251-1256 (1996) https://doi.org/10.1016/S0264-410X(96)00016-3
  79. R.S. Raghuvanshi, O.M. Singh and AK. Panda, Formulation and characterization of immunoreactive tetanus toxoid biodegradable polymer particles, Drug Delivery, 8, 99-106 (2001) https://doi.org/10.1080/107175401750177089
  80. T. lung, R. Koneberg, K.-D. Hungerer and T. Kissel, Tetanus toxoid microspheres consisting of biodegradable poly(lactide-co-glycolide)-and ABA-triblock-copolymers:immune response in mice, Int. J. Pharm., 234, 75-90 (2002) https://doi.org/10.1016/S0378-5173(01)00957-7
  81. M. Tovio, S.P. Schwendeman, Y Guo, J. McIver, R Langer and MJ. Alonso, Improved immunogenicity of a core-coated tetanus toxoid delivery system, Vaccine, 18, 618-622 (2000)
  82. Y.X., Li, T. Kissel, Synthesis and properties of biodegradable ABA triblock copolymers consisting of poly (L-lactic acid) or poly(L-lactic-co-glycolic acid) A-blocks attached to central poly(oxyethylene) B-blocks, J. Controll. Release, 27, 247-257 (1993) https://doi.org/10.1016/0168-3659(93)90155-X
  83. A.G.A Coombes, S. Tasker, M. Lindblad, l Holmgren, K.Hoste, V. Toncheva, E. Schacht, M.e. Davies and L. Illum, Biodegradable polymeric microparticles for drug delivery and vaccine formulation: the surface attachment of hydrophilic species using the concept of poly(ethylene glycol) anchoring segments, Biomaterials, 18, 1153-1161 (1997) https://doi.org/10.1016/S0142-9612(97)00051-3
  84. P. Johansen, H. Tamver, H.P. Merkle and B. Gander, Diphtheria and tetanus toxoid microencapsulation into conventional and end-group alkylated PLA-PLGAs, Eur. J. Pharm. Biopharm., 47, 193-201 (1999) https://doi.org/10.1016/S0939-6411(98)00095-2
  85. T. Jung, W Kamm, A Breitenbach, K.-D. Hungerer, E. Hundt and T. Kissel, Tetanus toxoid loaded nanopartic1es from sulfobutylated poly(Vinyl Alcohol)-graft-poly(lactideco-glycolide): Evaluation of antibody response after oral and nasal application in mice, Pharm. Res., 18, 352-360 (2001) https://doi.org/10.1023/A:1011063232257
  86. D.T. O'Hagan, H. Jeffery, MJJ. Roberts, lP. McGee and S.S.Davis, Controlled release microparticles for vaccine development, Vaccine, 9, 768-771 (1991) https://doi.org/10.1016/0264-410X(91)90295-H
  87. M. Ying, e. Thomasin, H.P. Merkle, B. Gander and G. Corradin, A single administration of tetanus toxoid in biodegradable microspheres elicits T cell and antibody responses similar or superior to those obtained with aluminumhydroxide, Vaccine, 13, 683-689 (1995) https://doi.org/10.1016/0264-410X(94)00046-P
  88. H.M. Vordermeier, A.G.A Coombes, P. Jenkins, J.P. McGee, D.T. O'Hagan, S.S. Davis and M. Singh, Synthetic delivery system for tuberculosis vaccines: immunological evaluation of the M. tuberculosis 38 kDa protein entrapped in biodegradable PLGA microparticles, Vaccine, 13, 1576-1582 (1995) https://doi.org/10.1016/0264-410X(95)00084-E
  89. K.F. Griffin, BR Conway, H.O. Alpar and ED. Williamson, Immune responses to V antigen of Yersinia pestis coencapsulated with IFN-: Effect of dose and formulation, Vaccine, 16, 517-521 (1998) https://doi.org/10.1016/S0264-410X(97)80005-9
  90. J.S. Moynihan, D.H. Jones, G.H. Farrar and e.RA Howard, A novel microencapsulated peptide vaccine against hepatitis B, Vaccine, 19, 3292-3300 (2001) https://doi.org/10.1016/S0264-410X(00)00540-5
  91. M. Singh, lP. McGee, XM. Li, W Koff, T. Zamb, C.Y Wang and D.T. O'Hagan, Biodegradable microparticles with an entrapped branched octameric peptide as a controlledrelease HIV-l vaccine, J. Pharm. Sci., 86, 1229-1233 (1997) https://doi.org/10.1021/js970174n
  92. R.K Gupta, A-e. Chang, P. Griffin, R Rivera and G.R Siber, In vivo distribution of radioactivity in micea after injection of biodegradable polymer microspheres containing $^{14}{C-labeled}$ tetanus toxoid, Vaccine, 14, 1414-1416 (1996)
  93. R.K Gupta, Ae. Chang and GR Siber, Biodegradable polymer microspheres as vaccine adjuvants and delivery systems, Dev. Biol. Stand., 92, 63-78 (1998)
  94. S. Sharpe, T. Hanke, A Tinsley-Bown, M. Dennis, S. Dowall, A McMichael and M. Cranage, Mucosal immunization with PLGA-microencapsulated DNA primes a SlY-specific CTL response revealed by boosting with cognate recombinant modified vaccine virus Ankara, Virology, 313, 13-21 (2003) https://doi.org/10.1016/S0042-6822(03)00282-4
  95. lE. Butler and RG. Hamilton, Quantitation of specific antibodies: Methods of expression, standard, solid-phase considerations, and specific applications: In Immunochemistry of Solid-phase Imunoassays, lE. Butler (Ed.), CRC Press, Boca Raton, Florida, U.S.A., pp. 173-198 (1991)
  96. S. Kodihalli, D.L. Kobasa and RG. Webster, Strategies for inducing protection against avian influenza A virus subtypes with DNA vaccines, Vaccine, 18, 2592-2599 (2000) https://doi.org/10.1016/S0264-410X(99)00485-5
  97. E. Fattal, S. Pecquet, P. Couvreur and A Andremont, Biodegradable microparticles for the mucosal delivery of antibacterial and dietary antigens, Int. J. Pharm., 242, 15-24 (2002) https://doi.org/10.1016/S0378-5173(02)00181-3
  98. M. Singh, XM. Li, lP. McGee, T. Zamb, W Koff, C.Y Wang and D.T. O'Hagan, Controlled release microparticles as a single dose hepatitis B vaccine: Evaluation of immunogenicity in mice, Vaccine, 15, 475-481 (1997) https://doi.org/10.1016/S0264-410X(97)00225-9
  99. Y. Changhong, WL. Rill, R Malli, J. Hewetson, H. Naseem, R. Tammariello and M. Kende, Intranasal stimulation of long-lasting immunity against aerosol ricin challenge with ricin toxoid, Vaccine, 14, 1031-1038 (1996) https://doi.org/10.1016/0264-410X(96)00063-1
  100. H.C.J. Ertl, I. Varga, Z.Q. Xiang, K. Kaiser, L. Stephens and L. Otvos Jr., Poly(DL-lactide-co-glycolide) microspheres as carriers for peptide vaccines, Vaccine, 14, 879-885 (1996) https://doi.org/10.1016/0264-410X(96)00005-9
  101. K.B. Walker, D.K. Xing, D. Sesardic and MJ. Corbel, Modulation of the immune response to tetanus toxoid by polylactide-polyglycolide microspheres, Dev. Biol. Stand., 92, 259-267 (1998)
  102. M. Igartua, R.M. Hernandez, A. Esquisabel, A.R., Gascon, M.B. Calvo and J.L. Pedraz, Enhanced immune response after subcutaneous and oral immunization with biodegradable PLGA microspheres, J. Control. Release, 56, 63-73 (1998) https://doi.org/10.1016/S0168-3659(98)00077-7
  103. D.K. Xing, K. McLellan, M.J. Corbel and D. Sesardic, Estimation of antigenic tetanus toxoid extracted from biodegradable microspheres, Biologicals, 24, 57-65 (1996) https://doi.org/10.1006/biol.1996.0006
  104. M. Helliwell, The use of bioadhesives in targeted delivery within the gastrointestinal tract, Adv. Drug Deliv. Rev; 11, 221-251 (1993) https://doi.org/10.1016/0169-409X(93)90011-R

Cited by

  1. Combined Poly(Lactide-Co-Glycolide) Microspheres Containing Diphtheria Toxoid for a Single-shot Immunization pp.1530-9932, 2018, https://doi.org/10.1208/s12249-017-0934-7