DOI QR코드

DOI QR Code

Cellular Uptake Behavior of Poly(D,L-lactide-co-glycolide) Nanoparticles Derivatized with HIV-1 Tat49-57 Peptide (Abbreviated Title: Tat-PLGA Nanoparticles)

  • Park, Ju-Young (Nanotechnology Research Team, Amore Pacific R&D Center) ;
  • Nam, Yoon-Sung (Nanotechnology Research Team, Amore Pacific R&D Center) ;
  • Kim, Jun-Oh (Nanotechnology Research Team, Amore Pacific R&D Center) ;
  • Han, Sang-Hoon (Nanotechnology Research Team, Amore Pacific R&D Center) ;
  • Chang, Ih-Seop (Nanotechnology Research Team, Amore Pacific R&D Center)
  • Published : 2004.04.20

Abstract

This work aims at examining the cellular uptake behavior of poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles derivatized with a protein transduction domain (PTD) using HeLa cells. For this purpose, $Tat_{49-57}$ peptide derived from transcriptional activation (Tat) protein of HIV type-1 was covalently conjugated to the terminal end of PLGA. Nanoparticles were ten prepared with the $Tat_{49-57}-PLGA$ conjugates by a spontaneous phase inversion method. The prepared particles had a mean diameter of ca. 84 nm, as measured by dynamic light scattering. The interaction of the Tat-PLGA nanoparticles with cells was examined by using confocal laser scanning microscopy. It was found tat Tat-PLGA nanoparticles incubated with HeLa cells could efficiently translocate into cytoplasm, while plain PLGA nanoparticles showed negligible cellular uptake. In addition, even at $4^{\circ}C$ or in the presence of sodium azide significant cellular internalization of Tat-PLGA nanoparticles was still observed. These results indicate that a non-endocytotic translocation mechanism might be involved in the cellular uptake of Tat-PLGA nanoparticles.

Keywords

References

  1. S. Fawell, J. Seery, Y. Daikh, C. Moore, L.L. Chen, B. Pepinsky and J. Barosoum, Tat-mediated delivery of heterologous proteins into cells. Proc. Natl. Acad. Sci. USA, 91, 664-668 (1994) https://doi.org/10.1073/pnas.91.2.664
  2. M. Lindgren, M. Hallbrink, A. Prochiantz and U. Langel, Cellpenetrating peptides. Trens. Pharmacol. Sci., 21, 99-103 (2000) https://doi.org/10.1016/S0165-6147(00)01447-4
  3. G. Elliott and P. OHare, Intercellular trafficking and protein delivery by a herpesvirus structural protein, Cell, 88, 223-233 (1997) https://doi.org/10.1016/S0092-8674(00)81843-7
  4. S.R. Schwarze, A. Ho, A.V. Akbani and S.F. Dowdy, In vivo protein transduction: delivery of a biologically active protein into the mouse, Science, 285, 1569-1572 (1999) https://doi.org/10.1126/science.285.5433.1569
  5. H. Bayley, Protein therapy-delivery guaranteed, Nature Biotech, 17, 1066-1067 (1999) https://doi.org/10.1038/15050
  6. J.J. Schwartz and S. Zhang, Peptide-mediated cellular delivery, Curr. Opin. Mol. Therap., 2, 162-167 (2000)
  7. E. Vives, P. Brodin and B. Lebleu, A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus, J. BioI. Chem., 272, 16010-16017 (1997) https://doi.org/10.1074/jbc.272.25.16010
  8. D.C. Anderson, E. Nicholas, R. Manger, D. Woodle, M. Barry and A.R. Fritzberg, Tumor cell retention of antibody Fab fragments is enhanced by an attached HIV TAT proteinderived peptide, Biochem. Biophys. Res. Commun., 194, 876-884 (1993) https://doi.org/10.1006/bbrc.1993.1903
  9. H.J. Schluesener, Protection against experimental nervous system autoimmune diseases by a human immunodeficiency virus-1 Tat peptide-based polyvalent vaccine, J. Neurosci. Res., 46, 258-262 (1996) https://doi.org/10.1002/(SICI)1097-4547(19961015)46:2<258::AID-JNR14>3.0.CO;2-Z
  10. C. Rudolph, C. Plank, J. Lausier, U. Schillinger, R.H. Muller and J. Rosenecker, Oligomers of the arginine-rich motif of the HIV-1 TAT protein are capable of transferring plasmid DNA into cells, J. BioI. Chem., 278, 11411-11418 (2003) https://doi.org/10.1074/jbc.M211891200
  11. V.P. Torchilin, R. Rammohan, V. Weissig and T.S. Levchenko, TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors, Proc. Natl. Acad. Sci. USA, 98, 8786-8791 (2001) https://doi.org/10.1073/pnas.151247498
  12. M. Lewin, N. Carlesso, C.H. Tung, X.W Tang, S. Cory, D.T. Scadden and R. Weissleder, Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells, Nature Biotech., 18, 410-414 (2000) https://doi.org/10.1038/74464
  13. J. Liu, Q. Zhang, E.E. Remsen and K.L. Wooley, Nanostructured materials designed for cell binding and transduction, Biomacromolecules, 2, 362-368 (2001) https://doi.org/10.1021/bm015515c
  14. J. Panyam, W.Z. Zhou, S. Prabha, S.K. Sahoo and V. Labhasetwar, Rapid endo-Iysosomal escape of poly(D,L-lactide- co-glycolide) nanoparticles: implications for drug and gene delivery, FASEB Journal, 16, 1217-1226 (2002) https://doi.org/10.1096/fj.02-0088com
  15. Y.S. Nam, J.Y. Park, S.H. Han and I.S. Chang, Intracellular drug delivery using poly(D,L-lactide-co-glycolide) nano-particles derivatized with a peptide from a transcriptional activator protein of HIV-1, Biotech. Lett., 24, 2093-2098 (2002) https://doi.org/10.1023/A:1021373731787
  16. Y.S. Narn, H.S. Kang, J.Y Park, T.G. Park, S.H. Han and I.S. Chang, New micelle-like polymer aggregates composed of PEI-PLGA diblock copolymers: micellar characteristics and cellular uptake, Biomaterials, 24, 2053-5059 (2003) https://doi.org/10.1016/S0142-9612(02)00641-5
  17. Y.S. Nam and T.G. Park, Protein loaded biodegradable microspheres based on PLGA-protein bioconjugates, J. Microencapsulation, 16, 625-637 (1999) https://doi.org/10.1080/026520499288816
  18. A. Nori, K.D. Jensen, M. Tijerina, P. Kopeekova and J. Kopeeek, Tat-conjugated synthetic macromolecules facilitate cytoplasmic drug delivery to human ovarian carcinoma cells, Bioconjugate Chem., 14, 44-50 (2003) https://doi.org/10.1021/bc0255900
  19. R. Duncan and J.B. Lloyd, Pinocytosis in the rat visceral yolk sac. Effects of temperature, metabolic inhibitors and some other modifiers, Biochim. Biophys. Acta, 544, 647-655 (1978) https://doi.org/10.1016/0304-4165(78)90339-2
  20. N. Imamoto, T. Shinmamoto, T. Takao, T. Tachibana, S. Kose, M. Matsubae, T. Sekimoto, Y. Shimonishi and Y. Yoneda, In vivo evidence for involvement of 58 kDa component of unclear pore-targeting complex in nuclear protein import, EMBO J., 14, 3617-3626 (1995)
  21. M. Rexach and G. Blobel, Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors, and nucleoporins, Cell, 83, 683-692 (1995) https://doi.org/10.1016/0092-8674(95)90181-7
  22. M. Ohno, M. Fornerod and I.W. Mattaj, Nucleocytoplasmic transport: the last 200 nanometers, Cell, 92, 327-336 (1998) https://doi.org/10.1016/S0092-8674(00)80926-5
  23. D. Gorlich and I.W. Mattaj, Nucleocytoplasmic transport, Science, 271, 1513-1518 (1996) https://doi.org/10.1126/science.271.5255.1513