토마토 뿌리조직에서 분리한 이온채널의 중금속에 의한 저해

Characterization of an Ion Channel Prepared from Tomato Roots and Inhibitory Effects by Heavy Metal Ions

  • 신대섭 (충북대학교 농과대학 농화학과) ;
  • 한민우 (충북대학교 농과대학 농화학과) ;
  • 김영기 (충북대학교 농과대학 농화학과)
  • Shin, Dae-Seop (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Han, Min-Woo (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Kim, Young-Kee (Department of Agricultural Chemistry, Chungbuk National University)
  • 발행 : 2004.12.31

초록

토마토 뿌리에 존재하는 이온채널의 특성을 조사하기 위하여, 마이크로솜을 분리하고 전기생리용 분석장치가 연결된 인공지질 이중막에 유입하였다. 그 결과 다섯 종류의 이온채널을 확인하였고, 이들 중 450 pS의 전기전도도를 갖는 비선택성 양이온채널을 가장 자주 관측하였다. 이 채널은 세 가지의 subconductance 상태를 보였으며, 이들의 전기전도도는 450, 257, 105 pS으로 측정되었다. 모든 subconductance 상태는 막전위 변화에 따른 전류변화가 직선적으로 나타났다. 채널의 활성은 양의 막전위에서 열림과 닫힘이 반복되는 전이상태를 보였지만, 음의 막전위에서는 평균 열림시간과 함께 열림확률도 증가하였다. 막전위 -40mV에서 측정한 채널의 열림확률은 0.83이었다. 이온선택성을 측정하기 위하여 지질막의 한쪽에만 50mM의 $K^+$ 또는 $Na^+$을 가하여 비대칭 이온조건을 만들었을 때, 두 경우 모두에서 전류역전전위는 동일하게 약 -l0mV 이동하였다. 이것은 450 pS채널이 $K^+$$Na^+$을 구별없이 통과시킴을 나타낸다. 중금속 이온들 중, $100\;{\mu}M$ 농도의 $La^{3+}$$Ba^{2+},\;Zn^{2+}$는 채널의 활성을 크게 저해하여 열림확률을 0.2 이하로 감소시켰다. 그러나, $Al^{3+}$$Cd^{2+}$은 활성을 약 20% 저해하였다. 흥미롭게도, 각각의 중금속 이온은 서로 다른 형태로 채널활성을 저해하였다. $La^{3+}$$500\;{\mu}M$ 농도에서 모든 subconductance 상태를 저해하였으나, $Zn^{2+}$는 1 mM의 농도에서도 105 pS의 subconductance 상태는 저해하지 않았다. 또한 $Cd^{2+}$은 음의 막전위에서도 채널의 열림을 long-opening상태에서 전이상태 열림으로 전환시켰다. 이러한 결과는 중금속 이온들이 채널단백질에 각각의 결합부위를 가질 수 있을 가능성을 의미하여, 식물 뿌리의 생리현상에서 450 pS 채널의 기능적 역할 뿐 만아니라 구조적 특징을 탐색할 수 있는 유용한 조절자나 탐색자로 이용될수 있음을 시사한다.

In order to characterize ion channels present in tomato roots, microsomes were incorporated into an artificial lipid bilayer arranged for electrophysiological analysis. Of the five different ion channels that could be found, a channel of 450 pS conductance was found most frequently. This channel displayed subconductance states of 450, 257 and 105 pS. All subconductance states showed linear current-voltage relationships. At positive holding potentials, high frequency of transient channel openings was observed; however, at negative potentials, the open times were long and open probability high. Po was 0.83 at -40 mV. When an additional 50 mM $K^+\;or\;Na^+$ was added to the cis side of bilayer, the reversal potentials shifted in the negative direction to near -10 mV. Thus, the 450 pS cation channel selects poorly between $K^+\;and\;Na^+$. In the presence of $100\;{\mu}M$ metal ions, the channel activity was severely inhibited by $La^{3+},\;Ba^{2+},\;and\;Zn^{2+}$, and Po was decreased to 0.2 or even less. However, $Al^{3+}\;and\;Cd^{2+}$ decreased the activity by only 20%. Interestingly, each metal ion showed different kinetics of channel inhibition. While $500\;{\mu}M\;La^{3+}$ inhibited the activities of all subconductance state, 1 mM $Zn^{2+}$ inhibited all except the 105 pS state. $Cd^{2+}$ changed the gating of the channel from a long-opening state to brief transient openings even at negative holding potentials. These data represent that the metal ions may have different binding sites on the channel protein and could be useful modulators and probes to investigate structural characteristics as well as the functional roles of the 450 pS channel on the root physiology.

키워드

참고문헌

  1. Hedrich, R. and Dietrich, P. (1996) Plant $K^+ channels: similarity and diversity. Bot. Acta 109, 94-101
  2. Schachtman, D. P. (2000) Molecular insights into the structure and function of plant $K^+ transport mechanisms. Biochim. Biophys. Acta 1465, 127-139 https://doi.org/10.1016/S0005-2736(00)00134-6
  3. Hirsch, R. E., Lewis, B. D., Spalding, E. P. and Sussman, M. R. (1998) A role for the AKTl potassium channel in plant nutrition. Science 280, 918-921
  4. Roberts, S. and Tester, M. (1997) A patch clamp study of $NA^+ transport in maize roots. J. Exp. Bot. 48, 431-440 https://doi.org/10.1093/jxb/48.Special_Issue.431
  5. Tyerman, S., Skerrett, M., Garrill, A., Findaly, G. P. and Leith, R. A. (1997) Pathways for the permeation of $NA^+ and Cl into protoplasts derived from the cortex of wheat roots. J. Exp. Bot. 48, 459-480 https://doi.org/10.1093/jxb/48.Special_Issue.459
  6. White, P. J. (1994) Characterization of a voltage-dependent cation-channel from the plasma membrane of rye (Secale cereals L.) roots in planar lipid bilayers. Planta 193, 186-193
  7. White, P. J. (1999) An energy barrier model for the permeation of monovalent and divalent cations through the maxi cation channel in the plasma membrane of rye roots. J. Membr. Biol. 168, 63-75 https://doi.org/10.1007/s002329900498
  8. Schroeder, J. I. and Hagiwara, S. (1990) Repetitive increases in cytosolic $Ca^2^+ of guard cells by abscisic acid activation of nonselective $Ca^2^+ permeable channels. Proc. Natl. Acad. Sci. USA 87, 9305-9309 https://doi.org/10.1073/pnas.87.23.9305
  9. Buschmann, P. H., Vaidyannathan, R., Gassmann, W. and Schroeder, J. I. (2000) Enhancement of $Na^+ uptake currents, time dependent inward-rectifying $K^+ channel currents, and $K^+ channel transcripts by $K^+ starvation in wheat root cells. Plant Physiol. 122, 1387-1397 https://doi.org/10.1104/pp.122.4.1387
  10. Schroeder, J. I. and Hagiwara, S. (1989) Cytosolic calcium regulates ion channels in the plasma membrane of Vicia faba guard cell. Nature 338, 427-430 https://doi.org/10.1038/338427a0
  11. Kurosaki, F., Kaburaki, H. and Nishi, A. (1994) Involvement of plasma membrane-located calmodulin in the response decay of cyclic nucleotide-gated cation channel of cultured carrot cells. FEBS Lett. 340, 193-196 https://doi.org/10.1016/0014-5793(94)80136-3
  12. Dennison, K. L. and Spalding, E. P. (2000) Glutamate-gated calcium fluxes in Arabidopsis. Plant Physiol. 124, 1511-1514 https://doi.org/10.1104/pp.124.4.1511
  13. Kiegle. E., Moore, C., Haseloff, J., Tester, M. and Knight, M. (2000) Cell-type specific calcium responses to drought, NaCl, and cold in Arabidopsis root: a role for endodermis and pericycle in stress signal transduction. Plant J. 23, 267-278 https://doi.org/10.1046/j.1365-313x.2000.00786.x
  14. Pottosin, I. I., Dobrovinskava, O. R. and M$\'u$niz, J. (2001) Conduction of monovalent and divalent cations in the slow vacuolar channel. J. Membr. Biol. 181, 55-65
  15. Tikhonova, L. I., Pottosin, I. I., Dietz, K. J. and Sch$\"o$nknecht, G. (1997) Fast-activation cation channels in barly mesophyll vacuoles. Inhibition by calcium. Plant J. 11, 1059-1070 https://doi.org/10.1046/j.1365-313X.1997.11051059.x
  16. Demidchik, V., Davenport, R. J. and Tester, M. (2002) Nonselective cation channels in plants. Annu. Rev. Plant Biol. 53, 67-107 https://doi.org/10.1146/annurev.arplant.53.091901.161540
  17. Pei, Z. M., Schroeder, J. I. and Schwarz, M. (1998) Background ion channel activities in Arabidopsis guard cells and review of ion channel regulation by protein phosphorylation events. J. Exp. Bot. 49, 319-328 https://doi.org/10.1093/jexbot/49.suppl_1.319
  18. Davenport, R. J. and Tester, M. (2000) A weakly voltagedependent, nonselective cation channel mediates toxic sodium influx in wheat. Plant Physiol. 122, 823-834 https://doi.org/10.1104/pp.122.3.823
  19. Cho, K. H., Sakong, J. and Kim, Y. K. (1998) Characterization of microsomal ATPases prepared from tomato roots. Agric. Chem. Biotechnol. 41, 130-136
  20. Cho, K. H. and Kim, Y. K. (2003) Two types of ion channel formation of tolaasin, a Pseudomonas peptide toxin. FEMS Microbiol. Lett. 221, 221-226 https://doi.org/10.1016/S0378-1097(03)00182-4
  21. Valinus, V., Bukauskas, F, F. and Weingart, R. (1997) Conductances and selective permeability of connexin43 gap junction channels examined in neonatal rat heart cells. Circ. Res. 80, 708-719 https://doi.org/10.1161/01.RES.80.5.708
  22. Demidchik, V. and Tester, M. (2002) Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots. Plant Physiol. 128, 379-387 https://doi.org/10.1104/pp.010524
  23. Lewis, B. D. and Spalding, E. P. (1998) Nonselective block by $La^3^+ of Arabidopsis ion channels involved in signal transduction. J. Membr. Biol. 162, 81-90 https://doi.org/10.1007/s002329900344