중합도별 gum류 가수분해 올리고당과 urea관련화합물과의 반응혼합물이 항산화능에 미치는 영향

Antioxidant Action of Reaction Mixtures of Gums Hydrolysates and Urea Derivatives

  • 김상우 (일본 오사까대학 단백질연구소) ;
  • 박귀근 (경원대학교 공과대학 생명공학부)
  • Kim, Sang-Woo (Institute of Protein Engineering, University of Osaka) ;
  • Park, Gwi-Gun (Dept. of Food and Bioengineering, Kyungwon University)
  • 발행 : 2004.12.31

초록

$100^{\circ}C$에서 반응시켜 2, 4, 6, 8시간의 갈변도 변화는 ${\beta}-1,4-mannobiose$와 urea의 반응혼합물이 시간의 경과함에 따라 강한 착색도의 증가를 나타냈으나 phenylthiourea, thiourea의 반응액은 착색속도가 늦었다. 같은 조건하에서 $Gal^3Man_4$와 urea 관련화합물의 각 반응혼합물의 갈변도를 나타낸 것으로 urea가 강한 착색도의 중가를 보였고 phenylthiourea, thiourea의 반응액은 비교적 높은 착색도를 보였다. DP 7의 galactosyl mannooligosaccharide와의 각 반응혼합물의 갈변도는 urea의 반응액이 강한 착색을 보였으며 phenylthiourea, thiourea의 반응액의 순으로 착색를 나타내었다. 반응혼합물의 TLC 결과에서 ${\beta}-1,4-mannobiose$와 urea의 반응혼합물 이외에 phenylthiourea, thiourea의 반응액은 새로운 화합물이 생성되었고, $Gal^3Man_4$와 D.P 7 galactosyl manooligosaccharide와의 반응혼합물에서는 모든 반응액에서 새로운 화합물이 출현되었다. 반응혼합물의 환원력은 urea관련화합물 중에서 특히 phenylthiourea, thiourea가 ${\beta}-1,4-mannobiose,\;Gal^3Man_4$, DP 7의 galactosyl manooligosaccharide와의 반응혼합물에서 강한 환원력이 나타났다. Linoleic acid에 대한 반응혼합물의 항산화력 측정에서 ${\beta}-1,4-mannobiose$와 thiourea의 반응혼합물의 항산화력이 Ascorbic acid(AsA)수준의 항산화력을 나타내었고, $Gal^3Man_4$와 thiourea, phenylthiourea의 반응혼합물은 AsA와 유사한 항산화능을 나타내었다. DP 7의 galactosyl manooligosaccharide와 thiourea, phenylthiourea의 반응혼합물의 항산화력은 AsA에 미치지는 못하였다. ${\beta}-1,4-Mannobiose$와 thiourea, phenylthiourea의 반응혼합물이 강한 전자공여능을 나타내고 있고, $Gal^3Man_4$와 phenylthiourea의 반응혼합물 및 D.P 7의 galactosyl manooligosaccharide와 phenylthiourea와의 반응혼합물이 전자공여능을 나타내고 있다.

The purified ${\beta}-mannanase$ hydrolyzed various gums to mannose, ${\beta}-1,4-mannobiose$, $Gal^3Man_4$, and D.P 7 of galactosyl mannooligosaccharide, and isolated from the enzymatic hydrolysate for 24 hrs reaction by activated carbon column chromatography and Sephadex G-25 column chromatography. For the elucidate of antioxidant action of ${\beta}-1,4-mannobiose$, $Gal^3Man_4$ and DP 7 of galactosyl mannooligosaccharide and urea derivatives, coloration, reducing power, antioxidant activity and DPPH test were accomplished. The coloration was high at reaction mixture of ${\beta}-1,4-mannobiose$, $Gal^3Man_4$ D.P 7 and urea. TLC of reaction mixture of ${\beta}-1,4-mannobiose$, $Gal^3Man_4$ D.P 7 and ureas showed new reaction products, respectively. but except reaction mixture of ${\beta}-1,4-mannobiose$ and urea. The reducing power was high at reaction mixture of ${\beta}-1,4-mannobiose$, $Gal^3Man_4$ D.P 7 and phenylthiourea. The reaction mixture of ${\beta}-1,4-mannobiose$, $Gal^3Man_4$ D.P 7 and thiourea showed similar radical scavenging activities on DPPH to activity of AsA. The reaction mixture of ${\beta}-1,4-mannobiose$, $Gal^3Man_4$ D.P 7 and thiourea, phenythiolurea shown strong antioxidative activites on the oxidation of linoneic acid.

키워드

참고문헌

  1. Tohyama, K., Kobayashi, Y., Kan, T., Yazawa, K., Terashima, T. and Futai, M. (1985) Effect of Lactobacillus on urinary indican excretion in gnotobiotic rats and man. Microbiol. Immunol. 26, 101-112 https://doi.org/10.1111/j.1574-6968.1985.tb01573.x
  2. Kato, H. (1963) Chemical studies on amino-carbonyl reaction. Part II. Identificadon of D-glucosone formed by oxidatine browning degradation of N-glucosides. Agr. Biol. Chem. 27, 461-465
  3. Hashiba, H. (1982) The browning reaction of amadori compounds derived from various sugars. Agric. Biol. Chem. 42, 547-552
  4. Haugaard, G., Tumerman, L. and Silverstri, H. (1951) A study on the reaction of aldoses and amino acids. J. Am. Chem. Soc. 73, 4594-4599 https://doi.org/10.1021/ja01154a028
  5. Ellis, G. P. (1959) The maillard reaction. Adv. Carbohydr. Chem. 14, 163-167
  6. Kim, Y. N., Kim, C. M., Han, K. W. and Oh, S. K. (1982) Effect of temperature on amino-carbonyl reaction. Korea J. Nutr. Food. 1, 51-61
  7. Pintauro, S. J., Page, G. V., Solberg, M., Lee, T. C. and Chichester, C. O. (1980) Absence of mutagenic response from extracts of maillard browned egg albumin. J. Food Sci. 46, 1433-1436 https://doi.org/10.1111/j.1365-2621.1981.tb04192.x
  8. Powrie, W. D., Wu, C. H., Rosin, M. P. and Stieh, H. F. (1981) Clastogenic and mutagenic activities of maillard reaction model systems. J. Food Sci. 46, 1433-1438 https://doi.org/10.1111/j.1365-2621.1981.tb04192.x
  9. Blois, M. S. (1958) Antioxidant determinations by the use of a stable free radical. Nature 181, 1199-1200 https://doi.org/10.1038/1811199a0
  10. McCleary, B. V. (1982) Purification and properties of a mannoside mannohydrolase from guar. Carbohydr. Res. 101, 74-92
  11. Palombo, R., Gertler, A. and Saguy, I. (1984) A simplified method for determination of browning in dairy powders. J. Food Sci. 49, 1609-1613 https://doi.org/10.1111/j.1365-2621.1984.tb12855.x
  12. Craig, J. C., Acets, N. C. and Della Monica, E. S. (1961) Occurrence of 5-hydroxymethylfurfural in vaccum foam dried whole milk and its relatation to processing and storage. J. Dairy Sci. 44, 1827-1835 https://doi.org/10.3168/jds.S0022-0302(61)89973-6
  13. Della Monica, E. S. (1968) Error in the analysis of hydroxymethylfurfural in processed milk. J. Dairy Sci. 51, 352-356 https://doi.org/10.3168/jds.S0022-0302(68)86989-9
  14. Hodge, J. E. and Rist, C. E. (1953) The amadori rearrangement under new conditions and its significance for non-enzymatic browning reactions. J. Am. Chem. Soc. 75, 316-320 https://doi.org/10.1021/ja01098a019
  15. Choi, J. Y. and Park, G. G. (2004) Metabolism activity of Bifidobacterium spp. by D.Ps of konjac glucomannan hydrolysates. J. Korean Soc. Food Sci. Nutr. 33, 1186-1191 https://doi.org/10.3746/jkfn.2004.33.7.1186
  16. Choi, J. Y. and Park, G. G. (2004) Purification of Bacillus sp. $\beta-mannanase and the growth activity of Bifidobacterium spp. by guar gum hydrolysates. Kor. J Microbiol. Biotechnol. 32, 117-122