Effect of Silkpeptide on Physicochemical Properties of Bread Dough

실크펩티드 첨가한 빵반죽의 이화학적 특성

  • Kim, Young-Ho (Department of Hotel Baking Technology, Hyejeon College)
  • Published : 2004.04.30

Abstract

Physicochemical properties of bread dough added with silkpeptide were investigated. Protein content of silkpeptide was 90.83%. In amino acid analysis, glycine content was highest at 18,760.04 mg%. Alanine, serine, and tyrosine contents were much higher in silkpeptide flour than wheat flour. Mixed silkpeptide showed low lightness and redness values and high yellowness. Farinograph water absorption decreased as silkpeptide content increased. Both arrival and development times of silkpeptide-added dough were longer than those of wheat flour, As silkpeptide content increased, degree of weakness increased, Maximum viscosity of amylograph decreased gradually with addition of silkpeptide, while gelatinization temperature was not affected. Extensograph showed extensibility and resistance to extension of dough increased, while ratio of resistence to extensibility highly increased with increasing amount of silkpeptide. Silkpeptide added to bread dough showed oxidation effect, indication that it could be used as natural additive for improving bread dough quality.

실크펩티드의 조단백질은 90.83%로 함량이 매우 높았고 총 아미노산 함량은 50,224.l2mg%로 역시 매우 높았다. 아미노산 조성은 glycine(37.4%)이 제일 많았으며 alanine(28.2%), serine(14.7%) 및 tyrosine(8.6%) 순으로 나타났고 이들 총 함량은 전체 아미노산 함량의 89%로 높은 비율을 차지하였다. 실크펩티드의 분자량은 1500-1600 Da로 측정되었으며, 입자크기는 $10-45{\mu}m$로 입자크기가 다양하였다. 반죽의 물리적 특성인 farinograph에서 반죽도달시간은 실크펩티드 첨가량 증가 시 대조구에 비해 시간이 다소 연장되었으며 반죽형성시간은 길어졌다. 안정도는 실크펩티드 2.0% 첨가까지는 대조구와 비슷한 안정도를 보였으나 3.0%, 4.0%로 증가시 안정도는 낮았고 약화도는 약간 증가하였다. Amylogram 특성에서 호화개시 온도는 100% 밀가루인 대조구는 $59.5^{\circ}C$이었으며 실크펩티드 3.0% 첨가까지는 대조구와 동일하였고, 4.0% 첨가구는 $58.0^{\circ}C$로 대조구보다 낮았다. 최고점도온도에서 실크펩티드 첨가구와 대조구는 차이를 보이지 않았으며 최고점도는 실크펩티드 증가시 감소하는 경향을 보였다. Extensograph에서 실크펩티드 증가시 반죽의 저항도는 크게 증가하였고 신장도의 값도 시간의 경과에 따라 증가하였다. 특히 2.0% 이상 첨가구의 90분 후부터는 저항도 값이 크게 증가하여 측정값을 나타낼 수가 없었다. 신장도와 저항도 값의 비율인 R/E값의 변화는 실크펩티드 증가에 따라 시간 경과 시 R/E값은 증가하였으며, 실크펩티드를 첨가하는 경우는 반죽의 가스 보유력과 발효 내구력이 밀가루만 사용할 경우보다는 크게 증가되어 산화제를 첨가한 반죽 물성을 보여 실크펩티드 첨가는 반죽의 물성에 미치는 영향을 여러 측면에서 볼 때 산화제 역할을 나타내어 기능성을 가진 천연 제빵개량제로도 긍정적인 효과가 있을 것이다.

Keywords

References

  1. Chen K, Umeda Y, Hirabayash K. Enzymatic hydrolysis of silk fibroin. Jpn. J. Sericult. Sci. 65: 131-133 (1995)
  2. Guoding C, Mitsuo A, Kiyoshi H. Isolation of tyrosine from silk fibroin by enzyme hydrolysis. Jpn. J. Sericult. Sci. 65: 182-184 (1996)
  3. Sugiyama K, Kushima Y, Muramatsu K. Effect of sulfur containing amino acids and glycine on plasma cholesterol level in rats fed on a high cholesterol diet. Agric. Biol. Chem. 49: 3455-3461 (1985) https://doi.org/10.1271/bbb1961.49.3455
  4. Takano R, Chen K, Hirabayashi K. Production of soluble fibroin powder by hydrolysis with hydrochloric acid and physical properties. Jpn. J. Sericult. Sci. 60: 358-362 (1991)
  5. Yoshikawa M, Chiba H. Frontiers and new horizons in amino acid research. Jpn. J. Sericult. Sci. 61: 403-406 (1992)
  6. Luo J, Chen K, Xu Q, Hirabayashi K. Study on foodization of fibroin and its functionality: The 2nd international silk conference. 1: 73-87 (1993)
  7. Keiko F, Sadayuki T, Rumiko K. Preparation and properties of a novel sponge cake by combining rice flour with silk fibroin protein. Jpn. J. Soc. Food Sci. Technol. 47: 363-367 (2000) https://doi.org/10.3136/nskkk.47.363
  8. AOAC. Official Methods of Analysis. 15th ed. Association of Official Analytical Chemists, Washington, DC, USA (1990)
  9. Prosky L, Asp NG, Furda I, Devreis JW, Scjweozer TF, Harland BA. Determination of total dietary fiber in foods and food products. J. Assoc. Off. Anal. Chem. 68: 677-684 (1987)
  10. Bidlingmeyer BA, Cohen SA, Taruin TL, Frost B. A new rapid high sensitivity analysis of amino acid in food type samples. J. Assoc. Off. Anal. Chem. 70: 241-253 (1987)
  11. AACC. Approved Method of the AACC. Method 54-21. American Association of Cereal Chemists, St. Paul, MN, USA (1985)
  12. AACC. Approved Method of the AACC. Method 22-10. American Association of Cereal Chemists, St. Paul, MN, USA (1985)
  13. AACC. Approved Method of the AACC. Method 54-10. American Association of Cereal Chemists, St. Paul, MN, USA (1985)
  14. Magoffin CD, Hoseney RC. A review of fermentation. Baker's Digest. 48: 22-29 (1974)
  15. Kim CT, Cho SJ, Hwang JK, Kim CJ. Composition of amino acid, sugars and minerals of domestic wheat varieties. Korean J. Soc. Food Sci. Nutr. 26: 229-235 (1997)
  16. Nahm JH, Oh YS. Study of pharmacological effect of silk fibroin. J. Agri. Sci. 37: 145-157 (1995) https://doi.org/10.1017/S0021859600083507
  17. Kwon HR, Ahn MS. Study on rheological and general baking properties of breads and their rusks prepared of various flour. Korean J. Food Sci. Technol. 11: 479-486 (1995)
  18. Parades-Lopez O, Bushuk W. Development and undevelopment of wheat dough by mixing microscopic structure and its relations to bread-making quality. Cereal Chem. 60: 24-27 (1982)
  19. Parkkonen T, Harkonen H, Autio K. Effect of baking on the microstructure of rye cell walls and protein. Cereal Chem. 71: 58-63 (1994)
  20. Pomeranz Y, Mayer D, Seible W. Wheat, rye and dough scanning electron microscopy. Cereal Chem. 61: 53-69 (1984)
  21. Kim DH. Food Chemistry. Tamgudang, Seoul, Korea. pp. 289-294 (1988)
  22. Hoseney RC, Hsu KH, Junge RC. A simple spread test to measure the rheological properties of fermenting dough. Cereal Chem. 56: 141-152 (1979)
  23. Cho NJ, Hur DK, Kim SK. The effect of ascorbic acid and Lcystein on rheological properties of wheat flour and no-time dough method. Korean J. Food Sci. Technol. 21: 800-807 (1989)
  24. Elkassabany M, Hoseney RC. Ascorbic acid as an oxidant in wheat flour dough II. Rheological effects. Cereal Chem. 57: 88-95 (1980)