Preparation of Minimally Processed Mulberry (Morus spp.) Juices

최소가공기술을 이용한 오디 과실주스의 제조

  • Kim, In-Sook (Department of Food Science and Nutrition, Catholic University of Daegu) ;
  • Lee, Jun-Young (Department of Food Science and Nutrition, Catholic University of Daegu) ;
  • Rhee, Soon-Jae (Department of Food Science and Nutrition, Catholic University of Daegu) ;
  • Youn, Kwang-Sup (Faculty of Food Science and Industrial, Catholic University of Daegu) ;
  • Choi, Sang-Won (Department of Food Science and Nutrition, Catholic University of Daegu)
  • 김인숙 (대구가톨릭대학교 식품영양학과) ;
  • 이준영 (대구가톨릭대학교 식품영양학과) ;
  • 이순재 (대구가톨릭대학교 식품영양학과) ;
  • 윤광섭 (대구가톨릭대학교 식품산업학부) ;
  • 최상원 (대구가톨릭대학교 식품영양학과)
  • Published : 2004.04.30

Abstract

Raw mulberry (Morus spp.) juice was prepared by minimal processing using several filter aids, fining agents, and clarifying enzymes, followed by filtration, centrifugation, and membrane filtration. Control of browning in minimally processed mulberry juices by anti-browning agents, sodium hydrosulfite, L-ascorbic acid, citric acid, and NaCl, was investigated using quantitative measurements of color changes during storage. Clarification of mulberry juice was improved by adding several filter aids, fining agents, and enzymes, followed by filtration and centrifugation. Several fining agents, including chitosan, chitin, PVPP, gelatin, and casein at a concentration of 1%, and combination of ultrafiltration and centrifugation at 8,000 rpm were not suitable for clarification of juice owing to strong adsorption of anthocyanin pigment. Combination of $0.01\;{\mu}m$ membrane filtration and centrifugation at 8,000 rpm was effective for clarification of mulberry juice. Browning of minimally processed mulberry juice was inhibited significantly by adding 200 ppm sodium hydrosulfite, and 0.1% L-ascorbic acid (L-AsA) and 0,1% citric acid (CA) also showed considerable browning inhibition. Combination of L-AsA and CA, which was moderately effective for browning inhibition of juice, may be useful as a sulfite alternative for mulberry juice. Optimum sugar ($^{\circ}Brix$)/acid ratio and commercial sterilization of minimally processed mulberry juice were approximately 40 and 10 min at $85-90^{\circ}C$, respectively.

오디 과실을 이용한 고부가가치의 가공식품의 개발에 관한 연구 일환으로 먼저 최소가공기술을 이용한 오디 과실주스 제조 방법을 조사하였다. 오디 과실의 물추출액을 면포여과, 감압여과(Whatman No. 4 filter paper를 이용한) 및 원심분리를 각각 실시한 결과 원심분리가 가장 좋은 청징효과를 나타내었다. 그리고 여러 여과보조제 및 청징제를 첨가한 후 원심분리하여 얻은 오디 과실즙의 색의 변화는 처리한 여과보조제, 청징제 및 청징 효소의 종류에 따라 차이가 있었으며, 특히 casein, gelatin, chitin, chitosan 및 PVPP는 오디 색소를 강하게 흡착하였으며, 그리고 청징효소 중 ${\alpha}-amylase$ 처리구가 가장 좋은 청징효과를 나타내었다. 다음, 오디 과즙을 원심분리한 후 $0.01\;{\mu}m$ 막여과를 실시한 결과 오디주스의 청징효과가 매우 우수하였으나 한외여과방법은 오디 색소의 강한 흡착으로 적절하지 않았다. 한편, 4가지 갈변저해제 처리에 따른 오디 과실주스의 갈변억제 효과를 측정한 결과 200ppm sodium hydrosulfite 처리구가 가장 갈변억제 효과가 우수하였으며, 아울러 0.1% L-ascorbic acid(L-AsA) 및 citric acid(CA)도 갈변억제 효과가 있었다. 그리고 위의 3가지 갈변저해제를 2중 복합병행 처리한 결과 0.1% L-AsA+0.1% CA 처리구가 가장 좋은 갈변억제 효과를 나타내었다. 마지막으로 관능검사를 실시한 결과 오디주스의 최적 당/산비는 40-50이었으며, 또한 상업적 살균 온도($85-90^{\circ}C$)에서 처리시간은 10분이 가장 적합함을 알 수 있었다.

Keywords

References

  1. Kim SK. Bonchohak. Chapter 17, p. 598. In: Beneficial Medicine, Mulberry Fruit, Younglimsa, Seoul, Korea (1991)
  2. Kangjoshineuihakwon. Jungyakdaesajon. Sohakkwyan, Sanghai, China. p. 3717 (1985)
  3. Park SW, Jung YS, Ko KC. Quantitative analysis of anthocyanins among mulberry cultivars and their pharmacological screening. J. Korean Soc. Hort. Sci. 38: 722-724 (1997)
  4. Lee HW, Shin DH, Lee WC. Morphological and chemical characteristics of mulberry (Morus) fruit with varieties. Korean J. Seri. Sci. 40: 1-7 (1998)
  5. Kim HB, Bang HS, Lee HW, Seuk YS, Sung GB. Chemical characteristics of mulberry syncarp. Korean J. Seri. Sci. 41: 123-128 (1999)
  6. Kim HB. Sensory characteristics of mulberry fruit jam and wine. Korean J. Seri. Sci. 42: 73-77 (2000)
  7. Kim HB, Lee YW, Lee YJ, Moon JY. Physiological effects and sensory characteristics of mulberry fruit wine with Chongilpong. Korean J. Seri. Sci. 43: 16-20 (2001)
  8. Kim TY, Kwon YB. A study on the antidiabetic effect of mulberry fruits. Korean J. Seri. Sci. 38: 100-107 (1996)
  9. Kim SY, Park KJ, Lee WC. Antiinflammatory and antioxidative effects of Morus spp. fruit extract. Korean J. Med. Crop Sci. 6: 204-209 (1998)
  10. Park JC, Choi JS, Choi JW. Effects of the fractions from the leaves, fruits, stems and roots of Cudrania tricuspidata and flavonoids on lipid peroxidation. Korean J. Pharmacogn. 26: 377-384 (1995)
  11. Cha JY, Kim HJ, Chung CH, Cho YS. Antioxidative activities and contents of polyphenolic compound of Cudrania tricuspidata. J. Korean Soc. Food Sci. Nutr. 28: 1310-1315 (1999)
  12. Kim HJ, Cha JY, Choi ML, Cho YS. Antioxidative activities by water-souble extracts of Morus alba and Cudrania tricuspidata. J. Korean Soc. Agric. Chem. Biotechnol. 43: 148-152 (2000)
  13. Kim HB, Kim SY, Ryu KS, Lee WC, Moon JY. Effect of methanol extract from mulberry fruit on the lipid metabolism and liver function in cholesterol-induced hyperlipidemia rats. Korean J. Seri. Sci. 43: 104-108 (2001)
  14. Oh H, Ko EK, Jun JY, Oh MH, Park SU, Kang KH, Lee HS, Kim YC. Hepatoprotective and free radical scavenging activities of prenylflavonoids, coumarin, and stilbene from Morus alba. Planta Med. 68: 932-934 (2002) https://doi.org/10.1055/s-2002-34930
  15. Asano N, Yamashita T, Yasuda K, Ikeda K, Kizu H, Kameda Y, Kato A, Nash RJ, Lee HS, Ryu KS. Polyhydoxylated alkaloids isolated from mulberry trees (Morus alba L.) and silkworms (Bombyx mori L.). J. Agric. Food Chem. 49: 4208-4213 (2001) https://doi.org/10.1021/jf010567e
  16. Markakis P. Anthocyanins as Food Color. Academic Press, New York, NY, USA (1982)
  17. Shewfelt RL. Quality of minimally processed fruits and vegetables. J. Food Qual. 10: 143-148 (1987) https://doi.org/10.1111/j.1745-4557.1987.tb00855.x
  18. Mertens B, Knorr D. Developments of nonthermal processes for food preservation. Food Technol. 46: 124-133 (1992)
  19. Manvell C. Minimal processing of food. Food Sci. Technol. Today 11: 107-111 (1997)
  20. Dock LL, Floros JD. Essentials of functional foods. pp. 345-355. In: Thermal and Nonthermal Preservation Methods. Schmidl MK, Labuza TP (eds). An Aspen Publication, Maryland, USA (2000)
  21. Koseoglu SS, Lawhon JT, Lusas EW. Vegetables juices produced with membrane technology. Food Technol. 45: 124-129 (1991)
  22. Apers GM. Control of enzymatic browning in raw fruit juice by filtration and centrifugation. J. Food Proc. Preser. 15: 443-456 (1991) https://doi.org/10.1111/j.1745-4549.1991.tb00187.x
  23. Shon TW. Food processing. Chapter 4. pp. 34-45. In: Recent Food Processing Technology. Hyungseol Press, Daegu, Korea (2001)
  24. Taylor SL, Higley NA, Bush RK. Sulfites in foods: uses, analytical methods, residues, fate, exposure assessment, metabolism, toxicity and hypersensitivity. Adv. Food Res. 30: 1-10 (1986) https://doi.org/10.1016/S0065-2628(08)60347-X
  25. Sapers GM, Hicks KB, Philips JG, Garzarella L, Pondish DL, Matulaitis RM, McCormack TJ, Sondey SM, Seib PA, Ei-Atawy YS. Control of enzymatic browning in apples with ascorbic acid derivatives, polyphenol oxidase inhibitors, and complexing agents. J. Food Sci. 54: 997-1012 (1989) https://doi.org/10.1111/j.1365-2621.1989.tb07931.x
  26. Sapers GM, Miller RL, Miller FC, Cooke PH, Choi SW Enzy-matic browning control in minimally processed mushrooms. J. Food Sci. 59: 1042-1047 (1994) https://doi.org/10.1111/j.1365-2621.1994.tb08185.x
  27. Chang EJ, Choi SW, No HG. Binding capacity of chitin and chitosan to anthocyanin pigment isolated from purple perilla leaves. J. Food Sci. Nutr. 5: 1-6 (2000)
  28. NVZ. Data Base of Product Sheet. Novozyme, Denmark (2002)
  29. Korea Food Industry Committee. Food Additives Code. Moonyoungsa, Seoul, Korea (2002)
  30. Zind T. The functional foods frontier. Food Proc. 4: 45-50 (1994)
  31. Fellars PJ. The relationship between the ratio of degrees brix to percent acid and sensory flavor in grapefruit juice. Food Technol. 4: 68-75 (1991)
  32. Jordan RB, Seelye RJ, McGlone VA. A sensory-based alternative to brix/acid ratio. Food Technol. 55: 36-44 (2001)