Effect of Maesil (Prunus mume) Juice on the Alcohol Metabolizing Enzyme Activities

매실즙이 알코올대사 효소활성에 미치는 영향

  • Published : 2004.04.30

Abstract

Changes in activities of alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) in vitro were examined by measuring maximum absorbances of ADH and ALDH at 340 nm to determine influence of Maesil (Prunus mume) on alcohol metabolism. Facilitating rates of ADH activity were 137.92, 131.58, 152,96, 218.70, 111.76, and 144.27% in Maesil juice, 5, 10, and 15% GMT, and 0.5 and 1.0% aspartic acid, respectively, ALDH activity increased in the order of Maesil juice > ALDH > GMT > aspartic acid, and facilitating rate of ALDH activity in Maesil juice was the highest at 976.44%. These results indicate alcohol metabolizing activity can be enhanced by Maesil juice.

매실즙, GMT, 아스파르트산의 ADH 및 ALDH의 활성에 미치는 영향을 in vitro에서 조사하였다. 매실즙 및 GMT, 아스파르트산의 ADH의 활성에 미치는 효과는 반응 후의 최대 흡광도와 효소의 반응 속도를 통하여 분석하였다. 최대 흡광도의 경우 모든 실험구에서 유의적인 상승 효과를 나타냈으며 대조구의 최대 흡광도를 100으로 하였을 때 매실즙, GMT(5, 10, 15%), 아스파르트산(0.5, 1.0%)의 값은 각각 137.9, 131.6, 153.0, 218.7, 111.8, 144.3으로 나타났다. 매실즙과 GMT 및 아스파르트산을 혼합하여 이들의 ADH 효소 활성에 대한 상승효과를 조사한 결과 모든 실험구에서 유의적인 상승효과를 나타냈으며 이중 매실즙과 10% GMT 혼합 첨가군에서 가장 높은 상승효과를 나타냈다. ALDH 효소 활성도의 증가수준을 비교해보면 매실즙 첨가군이 가장 증가정도가 높았고 그 다음이 ALDH를 첨가한 경우 였으며 GMT, 아스파르트산의 순으로 활성 증가를 나타냈다. 매실즙의 경우 효소만 첨가한 대조구의 흡광도의 값을 100%로 보았을 때 매실즙 첨가군의 값은 976.4%로 나타나 ALDH의 활성이 10배 가까이 증가되는 양상을 나타내어 매실즙의 숙취해소 식품으로의 개발 가능성을 나타내었다.

Keywords

References

  1. Jung DH, You JY. Fermented Foods of Vegetables. Gang Il Sa, Seoul, Korea (1997)
  2. Kim JH, Xiao PG. Traditional Drugs of the East. Young Lim Sa, Seoul, Korea (1989)
  3. Han JT, Lee SY, Kin KN, Baek NI. Rutin, Antioxidant compound isolated from the fruit of Prunus memu. J. Korean Soc. Agric. Chem. Biotechnol. 44: 35-37 (2001)
  4. Shirasaka N, Kurematsu A, Kondo S, Ida M, Hase T, Yoshizumi H. Isolation and characterization of antioxidative compounds from Ume(Prunus mume). J. Jpn. Soc. Food Sci. Technol. 46: 792-798 (1999) https://doi.org/10.3136/nskkk.46.792
  5. Lim JW. Studies on the antibacterial and physiological activities of Prunus mume. PhD thesis, Korea Univ. , Seoul, Korea (1999)
  6. Bae JH, Kim GJ. Effect of Prunus mume extract containing beverages on the proliferation of food-borne pathogens. J. East Asian Diet. Life 9: 214-222 (1999)
  7. Bae JH, Kim KJ, Kim SM, Lee WJ, Lee SJ. Development of the Functional beverage containing the Prunus mume extracts. Korean J. Food Sci. Technol. 32: 713-719 (2000)
  8. Yoshihiro C, Hiroshi O, Mayumi OK, Kousai M, Tadahiro N, Yuji K. Mume fural, citric acid derivative improving blood fluidity from fruit-juice concentrate of Japanese apricot (Prunus mume Sieb. et Zucc). J. Agric. Food Chem. 47: 828 (1999) https://doi.org/10.1021/jf980960t
  9. Choi GW. Effect of Maesil's extract on the recovery after all-out exercise. PhD thesis, HanYang Univ., Seoul, Korea (1992)
  10. Sheo HJ, Ko EY, Lee MY. Effects of Prunus mume extracts on experimently alloxan induced diabetes in rabbits. Korean J. Food Sci. Nutr. 16: 41-47 (1987)
  11. Lieber CS. Alcohol and the liver: Update. Gastroenterology 106: 1085-1090 (1994) https://doi.org/10.1016/0016-5085(94)90772-2
  12. Paek SC. Ethanol oxidation is accelerated by augmentation of malate-aspartate shuttle with aspartate. Korean J. Biochem. 25: 137-143 (1993)
  13. Kim CI. Cause and effect of hangover. Food Ind. Nutr. 4: 26-30 (1999)
  14. Jornvall H, Hoog JO, Bahr-Lindstrom H, Johanson J, Kaiser R, Person R. Alcohol dehydrogenase and aldehyde dehydrogenase in biochemistry of alcohol and alcoholism. Biochem. Soc. Trans. 16: 26-30 (1987)
  15. Choi JT, Joo HK, Lee SK. The effect of Schizandrae Fructus extract on alcohol fermentation and enzyme activities of Saccharomyce cerevisiae. Agric. Chem. Biotechnol. 38: 278-282 (1995)
  16. Racker E. Alcohol dehydrogenase from bakers yeast. Methods Enzymol. 1: 500-506 (1955) https://doi.org/10.1016/0076-6879(55)01084-7
  17. Tottmar SO, Petterson H, Kiessling KH. The subcellular distribution and properties of aldehyde dehydrogenase in rat liver. Biochem. J. 135: 577-581 (1973) https://doi.org/10.1042/bj1350577a