DOI QR코드

DOI QR Code

Cloning and Sequencing Analysis of the Repressor Gene of Temperate Mycobacteriophage L1

  • Published : 2004.03.31

Abstract

The wild-type and temperature-sensitive (ts) repressor genes were cloned from the temperate mycobacteriophage L1 and its mutant L1cIts391, respectively. A sequencing analysis revealed that the $131^{st}$ proline residue of the wild-type repressor was changed to leucine in the ts mutant repressor. The 100% identity that was discovered between the two DNA regions of phages L1 and L5, carrying the same sets of genes including their repressor genes, strengthened the speculation that L1 is a minor variant of phage L5 or vice versa. A comparative analysis of the repressor proteins of different mycobacteriophages suggests that the mycobacteriophage-specific repressor proteins constitute a new family of repressors, which were possibly evolved from a common ancestor. Alignment of the mycobacteriophage-specific repressor proteins showed at least 7 blocks (designated I-VII) that carried 3-8 identical amino acid residues. The amino acid residues of blocks V, VI, and some residues downstream to block VI are crucial for the function of the L1 (or L5) repressor. Blocks I and II possibly form the turn and helix 2 regions of the HTH motif of the repressor. Block IV in the L1 repressor is part of the most charged region encompassing amino acid residues 72-92, which flanks the putative N-terminal basic (residues 1-71) and C-terminal acidic (residues 93-183) domains of L1 repressor.

Keywords

References

  1. Barletta, R. G., Kim, D. D., Snapper, S. B., Bloom, B. R. and Jacobs, W. R., Jr. (1992) Identification of expression signals of the mycobacteriophage Bxb1, L1 and TM4 using the Escherichia-Mycobacterium shuttle plasmids pYUB75 and pYUB76 designed to create translational fusions to the lacZ gene. J. Gen. Microbiol. 138, 23-30. https://doi.org/10.1099/00221287-138-1-23
  2. Bashyam, M. D., Kaushal, D., Dasgupta, S. K. and Tyagi, A. K. (1996) A study of the mycobacterial transcriptional apparatus: identification of novel features in promoter elements. J. Bacteriol. 178, 4847-4853.
  3. Brown, K. L., Sarkis, G. J., Wadsworth, C. and Hatfull, G. F. (1997) Transcriptional silencing by the mycobacteriophage L5 repressor. EMBO J. 16, 5914-5921. https://doi.org/10.1093/emboj/16.19.5914
  4. Chaudhuri, B., Sau, S., Datta, H. J. and Mandal, N. C. (1993) Isolation, characterization and mapping of temperaturesensitive mutations in the genes essential for lysogenic and lytic growth of the mycobacteriophage L1. Virology. 194, 166-172. https://doi.org/10.1006/viro.1993.1246
  5. Chattopadhyaya, R. and Ghosh, K. (2003) A comparative threedimensional model of the carboxy-terminal domain of the lambda repressor and its use to build intact repressor tetramer models bound to adjacent operator sites. J. Struct. Biol. 141, 103-114. https://doi.org/10.1016/S1047-8477(02)00627-5
  6. Chattopadhyay, C., Sau, S. and Mandal, N. C. (2003) Cloning and characterization of the promoters of temperate mycobacteriophage L1. J. Biochem. Mol. Biol. 36, 586-592. https://doi.org/10.5483/BMBRep.2003.36.6.586
  7. Dasgupta, S. K., Bashyam, M. D. and Tyagi, A. K. (1993) Cloning and assessment of mycobacterial promoters by using a plasmid shuttle vector. J. Bacteriol. 175, 5186-5192.
  8. Datta, H. J. and Mandal, N. C. (1998) Identification of an early positive regulatory gene of mycobacteriophage L1. J. Gen. Virol. 79, 205-210.
  9. Ebright, R. H., Cossart, P., Gicquel-Sanzey, B. and Beckwith, J. (1984) Mutations that alter the DNA sequence specificity of the catabolite gene activator protein of E. coli. Nature 311, 232-235. https://doi.org/10.1038/311232a0
  10. Garcia, M., Pimentel, M. and Moniz-pereira, J. (2002) Expression of mycobacteriophage Ms6 lysis genes is driven by two $\sigma$70-like promoters and is dependent on a transcription termination signal present in the leader RNA. J. Bacteriol. 184, 3034-3043. https://doi.org/10.1128/JB.184.11.3034-3043.2002
  11. Hatfull, G. F. (2000) Molecular Genetics of Mycobacteria. Hatfull, G. F. and Jacob, W. R., Jr. (eds.), pp. 37-54. ASM Press. Washington D.C., USA.
  12. Hochschild, A., Douhan, J. III. and Ptashne, M. (1986) How $\lambda$ Repressor and $\lambda$ Cro distinguish between $O_R$1 and $O_R$3. Cell 47, 807-816. https://doi.org/10.1016/0092-8674(86)90523-4
  13. Jain, S., Kaushal, D., DasGupta, S. K. and Tyagi, A. K. (1997) Construction of shuttle vectors for genetic manipulation and molecular analysis of Mycobacteria Gene 190, 37-44. https://doi.org/10.1016/S0378-1119(96)00746-9
  14. Jain, S. and Hatfull, G. F. (2000) Transcriptional regulation and immunity in mycobacteriophage Bxb1. Mol. Microbiol 38, 971-985.
  15. Lee, M. H., Pascopella, L., Jacobs, W. R. Jr. and Hatfull, G. F. (1991) Site-specific integration of mycobacteriophage L5: integration-proficient vectors for Mycobacterium smegmatis, Mycobacterium tuberculosis, and bacille Calmette-Guerin. Proc. Natl. Acad. Sci. USA 88, 3111-3115. https://doi.org/10.1073/pnas.88.8.3111
  16. Nesbit, C. E., Levin, M. E., Donnelly-Wu, M. K. and Hatfull, G. F. (1995) Transcriptional regulation of repressor synthesis in mycobacteriophage L5. Mol. Microbiol. 17, 1045-1056. https://doi.org/10.1111/j.1365-2958.1995.mmi_17061045.x
  17. Pedulla, M. L., Ford, M. E., Houtz, J. M., Karthikeyan, T., Wadsworth, C., Lewis, J. A., Jacobs-Sera, D., Falbo, J., Gross, J., Pannunzio, N. R., Brucker, W., Kumar, V., Kandasamy, J., Keenan, L., Bardarov, S., Kriakov, J., Lawrence, J. G., Jacobs, W. R. Jr., Hendrix, R. W. and Hatfull, G. F. (2003) Origins of Highly Mosaic Mycobacteriophage Genomes. Cell. 113, 171-182. https://doi.org/10.1016/S0092-8674(03)00233-2
  18. Ramesh, G. and Gopinathan, K. P. (1995) Cloning and characterization of mycobacteriophage I3 promoters. Indian J. Biochem. Biophys. 32, 361-367.
  19. Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual. 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA.
  20. Thliveris, A. T. and Mount, D. W. (1992) Genetic identification of the DNA binding domain of Escherichia coli LexA protein. Proc. Natl. Acad. Sci. USA 89, 4500-4504. https://doi.org/10.1073/pnas.89.10.4500
  21. Wharton, R. P. and Ptashne, M. (1987) A new-specificity mutant of 434 repressor that defines an amino acid-base pair contact. Nature 326, 888-891. https://doi.org/10.1038/326888a0

Cited by

  1. Antagonistic effects Na+ and Mg2+ on the structure, function, and stability of mycobacteriophage L1 repressor vol.42, pp.5, 2009, https://doi.org/10.5483/BMBRep.2009.42.5.293
  2. Integration-Dependent Bacteriophage Immunity Provides Insights into the Evolution of Genetic Switches vol.49, pp.2, 2013, https://doi.org/10.1016/j.molcel.2012.11.012
  3. Mycobacteriophages: Genes and Genomes vol.64, pp.1, 2010, https://doi.org/10.1146/annurev.micro.112408.134233
  4. Biochemical characterization of L1 repressor mutants with altered operator DNA binding activity vol.2, pp.2, 2012, https://doi.org/10.4161/bact.21157