DOI QR코드

DOI QR Code

Chemical Modification of Transducin with Dansyl Chloride Hinders Its Binding to Light-activated Rhodopsin

  • Kosoy, Ana (Departamento de Quimica, Universidad Simon Bolivar) ;
  • Moller, Carolina (Departamento de Quimica, Universidad Simon Bolivar) ;
  • Perdomo, Deisy (Departamento de Biologia Celular, Universidad Simon Bolivar) ;
  • Bubis, Jose (Departamento de Biologia Celular, Universidad Simon Bolivar)
  • Published : 2004.03.31

Abstract

Transducin (T), the heterotrimeric guanine nucleotide binding protein in rod outer segments, serves as an intermediary between the receptor protein, rhodopsin, and the effector protein, cGMP phosphodiesterase. Labeling of T with dansyl chloride (DnsCl) inhibited its light-dependent guanine nucleotide binding activity. Conversely, DnsCl had no effect on the functionality of rhodopsin. Approximately 2-3 mol of DnsCl were incorporated per mole of T. Since fluoroaluminate was capable of activating DnsCl-modified T, this lysine-specific labeling compound did not affect the guanine nucleotide-binding pocket of T. However, the labeling of T with DnsCl hindered its binding to photoexcited rhodopsin, as shown by sedimentation experiments. Additionally, rhodopsin completely protected against the DnsCl inactivation of T. These results demonstrated the existence of functional lysines on T that are located in the proximity of the interaction site with the photoreceptor protein.

Keywords

References

  1. Baylor, D. A. (1996) How photons start vision. Proc. Natl. Acad. Sci. USA 93, 560-565. https://doi.org/10.1073/pnas.93.2.560
  2. Berman, D. M., Kozasa, T. and Gilman, A. G. (1996) The GTPase-activating protein RGS4 stabilizes the transition state for nucleotide hydrolysis. J. Biol. Chem. 271, 27209-27212. https://doi.org/10.1074/jbc.271.44.27209
  3. Bigay, J., Deterre, P., Pfister, C. and Chabre, M. (1985) Fluoroaluminates activate transducin-GDP by mimicking the $\gamma$- phosphate of GTP in its binding site. FEBS Lett. 191, 181-185. https://doi.org/10.1016/0014-5793(85)80004-1
  4. Bigay, J., Deterre, P., Pfister, C. and Chabre, M. (1987) Fluoride complexes of aluminum or beryllium act on G-proteins as reversibly bound analogues of the $\gamma$ phosphate of GTP. EMBO J. 6, 2907-2913.
  5. Bockaert, J. and Pin, J. P. (1999) Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J. 18, 1723-1729. https://doi.org/10.1093/emboj/18.7.1723
  6. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  7. Bubis, J. (1995) Improved purification of transducin subunits from bovine retinal rod outer segments. Biol. Res. 28, 291-299. https://doi.org/10.1006/cbmr.1995.1020
  8. Bubis, J. (1998) Effect of detergents and lipids on transducin photoactivation by rhodopsin. Biol. Res. 31, 59-71. https://doi.org/10.1006/cbmr.1997.1462
  9. Bubis, J. and Khorana, H. G. (1990) Sites of interaction in the complex between $\beta$- and $\gamma$-subunits of transducin. J. Biol. Chem. 265, 12995-12999.
  10. Bubis, J., Millan, E. J. and Martinez, R. (1993) Identification of guanine nucleotide binding proteins from Trypanosoma cruzi. Biol. Res. 26, 177-188.
  11. Bubis, J., Ortiz, J. O. and Möller, C. (2001) Chemical modification of transducin with iodoacetic acid: transducin-$\alpha$ carboxymethylated at Cys347 allows transducin binding to lightactivated rhodopsin but prevents its release in the presence of GTP. Arch. Biochem. Biophys. 395, 146-157. https://doi.org/10.1006/abbi.2001.2550
  12. Bubis, J., Ortiz, J. O., Moller, C. and Millan, E. J. (1995) Identification and characterization of transducin functional cysteines, lysines, and acidic residues by group-specific labeling and chemical cross-linking; in Methods in Protein Structure Analysis, Atassi, M. Z. and Appella, E. (eds.), pp. 227-250, Plenum Press, New York, USA.
  13. Carman, C. V. and Benovic, J. L. (1998) G-protein-coupled receptors: turn-ons and turn-offs. Curr. Opin. Neurobiol. 8, 335-344. https://doi.org/10.1016/S0959-4388(98)80058-5
  14. Chen, F. and Lee, R. (1997) Phosducin and $\beta$$\gamma$-transducin interaction I: effects of post-translational modifications. Biochem. Biophys. Res. Commun. 233, 370-374. https://doi.org/10.1006/bbrc.1997.6460
  15. Chen, R. F. (1968) Dansyl labeled proteins: determination of extinction coefficient and number of bound residues with radioactive dansyl chloride. Anal. Biochem. 25, 412-416. https://doi.org/10.1016/0003-2697(68)90116-4
  16. Coleman, D. E., Berghuis, A. M., Lee, E., Linder, M. E., Gilman, A. G. and Sprang, S. R. (1994) Structures of active conformations of Gi$\alpha$1 and the mechanism of GTP hydrolysis. Science 265, 1405-1412. https://doi.org/10.1126/science.8073283
  17. Du, H., Fuh, R. A., Li, J., Corkan, A. and Lindsey, J. S. (1998) PhotochemCAD: a computer-aided design and research tool in photochemistry. Photochem. Photobiol. 68, 141-142.
  18. Fahmy, K. (1998) Binding of transducin and transducin-derived peptides to rhodopsin studies by attenuated total reflection-Fourier transform infrared difference spectroscopy. Biophys. J. 75, 1306-1318. https://doi.org/10.1016/S0006-3495(98)74049-4
  19. Garcia, P. D., Onrust, R., Bell, S. M., Sakmar, T. P. and Bourne, H. R. (1995) Transducin-$\alpha$ C-terminal mutations prevent activation by rhodopsin: a new assay using recombinant proteins expressed in cultured cells. EMBO J. 14, 4460-4469.
  20. Hamm. H. E. (1998) The many faces of G protein signaling. J. Biol. Chem. 273, 669-672. https://doi.org/10.1074/jbc.273.2.669
  21. Hamm, H. E., Deretic, D., Arendt, A., Hargrave, P. A., Koenig, B. and Hofmann, K. P. (1988) Site of G protein binding to rhodopsin mapped with synthetic peptides from the a subunit. Science 241, 832-835. https://doi.org/10.1126/science.3136547
  22. Hargrave, P. A. (2001) Rhodopsin structure, function, and topography the Friedenwald lecture. Invest. Ophthalmol. Vis. Sci. 42, 3-9.
  23. Hargrave, P. A., McDowell, J. H., Curtis, D. R., Wang, J. K., Juszczak, E., Fong, S.-L., Mohana Rao, J. K. and Argos, P. (1983) The structure of bovine rhodopsin. Biophys. Struc. Mech. 9, 235-244. https://doi.org/10.1007/BF00535659
  24. He, W., Cowan, C. W. and Wensel, T. G. (1998) RGS9, a GTPase accelerator for phototransduction. Neuron 20, 95-102. https://doi.org/10.1016/S0896-6273(00)80437-7
  25. Hingorani, V. N. and Ho, Y. -K. (1987) Chemical modification of bovine transducin: effect of fluorescein 5'-isothiocyanate labeling on activities of the transducin a subunit. Biochemistry 26, 1633-1639. https://doi.org/10.1021/bi00380a022
  26. Jaffe, M. and Bubis, J. (2002) Affinity labeling of the guanine nucleotide binding site of transducin by pyridoxal 5'-phosphate. J. Protein Chem. 21, 339-348. https://doi.org/10.1023/A:1019942318202
  27. Kisselev, O. G., Ermolaeva, M. V. and Gautam, N. (1994) A farnesylated domain in the G protein $\gamma$ subunit is a specific determinant of receptor coupling. J. Biol. Chem. 269, 21399-21402.
  28. Kisselev, O., Pronin, A., Ermolaeva, M. and Gautam, N. (1995) Efficient interaction with a receptor requires a specific type of prenyl group on the G protein $\gamma$ subunit. Proc. Natl. Acad. Sci. USA 92, 9102-9106. https://doi.org/10.1073/pnas.92.20.9102
  29. Kisselev, O. G., Meyer, C. K., Heck, M., Ernst, O. P. and Hofmann, K. P. (1999) Signal transfer from rhodopsin to the G-protein: evidence for a two-site sequential fit mechanism. Proc. Natl. Acad. Sci. USA 96, 4898-4903. https://doi.org/10.1073/pnas.96.9.4898
  30. Laemmli, U. K. (1970) Cleavage of structural proteins during assembly of head bacteriophage T4. Nature 227, 680-685. https://doi.org/10.1038/227680a0
  31. Lamb, T. D. (1996) Gain and kinetics of activation in the Gprotein cascade of phototransduction. Proc. Natl. Acad. Sci. USA 93, 566-570. https://doi.org/10.1073/pnas.93.2.566
  32. Lambright, D. G., Noel, J. P., Hamm. H. E. and Sigler, P. B. (1994) Structural determinants for activation of the $\alpha$-subunit of a heterotrimeric G protein. Nature 369, 621-628. https://doi.org/10.1038/369621a0
  33. Lichtarge, O., Bourne, H. R. and Cohen, F. E. (1996) Evolutionarily conserved G$\alpha$$\beta$$\gamma$ binding surfaces support a model of the G protein-receptor complex. Proc. Natl. Acad. Sci. USA 93, 7507-7511. https://doi.org/10.1073/pnas.93.15.7507
  34. Makino, E. R., Handy, J. W., Li, T. and Arshavsky, V. Y. (1999) The GTPase activating factor for transducin in rod photoreceptors is the complex between RGS9 and type 5 G protein $\beta$ subunit. Proc. Natl. Acad. Sci. USA 96, 1947-1952. https://doi.org/10.1073/pnas.96.5.1947
  35. Martin, E. L., Rens-Domiano, S., Schatz, P. J. and Hamm, H. E. (1996) Potent peptide analogues of a G protein receptorbinding region obtained with a combinatorial library. J. Biol. Chem. 271, 361-366. https://doi.org/10.1074/jbc.271.1.361
  36. Mazzoni, M. R. and Hamm, H. E. (1996) Interaction of transducin with light-activated rhodopsin protects it from proteolytic digestion by trypsin. J. Biol. Chem. 271, 30034-30040. https://doi.org/10.1074/jbc.271.47.30034
  37. Millan, E. J and Bubis, J. (2002) Identification of functionally important cysteines in the $\alpha$-subunit of transducin by chemical cross-linking techniques. J. Protein Chem. 21, 1-8. https://doi.org/10.1023/A:1014174630063
  38. Mixon, M. B., Lee, E., Coleman, D. E., Berghuis, A. M., Gilman, A. G. and Sprang, S. R. (1995) Tertiary and quaternary structural changes in Gi$\alpha$1 induced by GTP hydrolysis. Science 270, 954-960. https://doi.org/10.1126/science.270.5238.954
  39. Nathans, J. and Hogness, D. S. (1983) Isolation, sequence analysis, and intron-exon arrangement of the gene encoding bovine rhodopsin. Cell 34, 807-814. https://doi.org/10.1016/0092-8674(83)90537-8
  40. Natochin, M. and Artemyev, N. O. (2000) Mutational analysis of functional interfaces of transducin. Methods Enzymol. 315, 539-554. https://doi.org/10.1016/S0076-6879(00)15866-5
  41. Nishimura, S., Kandori, H. and Maeda, A. (1998) Interaction between photoactivated rhodopsin and the C-terminal peptide of transducin $\alpha$-subunit studied by FTIR spectroscopy. Biochemistry 37, 15816-15824. https://doi.org/10.1021/bi981451n
  42. Noel, J. P., Hamm, H. E. and Sigler, P. B. (1993) The 2.2 $\AA$ crystal structure of transducin-$\alpha$ complexed with GTP$\gamma$S. Nature 366, 654-663. https://doi.org/10.1038/366654a0
  43. Okada, T., Le Trong, I., Fox, B. A., Behnke, C. A., Stenkamp, R. E. and Palczewski, K (2000) X-ray diffraction analysis of three-dimensional crystals of bovine rhodopsin obtained from mixed micelles. J. Struct. Biol. 130, 73-80. https://doi.org/10.1006/jsbi.1999.4209
  44. Onrust, R., Herzmark, P., Chi, P., Garcia, P. D., Lichtarge, O., Kingsley, C. and Bourne, H. R. (1997) Receptor and $\beta$$\gamma$ binding sites in the $\alpha$ subunit of the retinal G protein transducin. Science 275, 381-384. https://doi.org/10.1126/science.275.5298.381
  45. Ortiz, J. O. and Bubis, J. (2001) Effects of differential sulfhydryl group-specific labeling on the rhodopsin and guanine nucleotide binding activities of transducin. Arch. Biochem. Biophys. 387, 233-242. https://doi.org/10.1006/abbi.2000.2219
  46. Osawa, S. and Weiss, E. R. (1995) The effect of carboxyl-terminal mutagenesis of Gt$\alpha$ on rhodopsin and guanine nucleotide binding. J. Biol. Chem. 270, 31052-31058. https://doi.org/10.1074/jbc.270.52.31052
  47. Ovchinnikov, Y. U. A. (1982) Rhodopsin and bacteriorhodopsin: structure-function relationships. FEBS Lett. 148, 179-191. https://doi.org/10.1016/0014-5793(82)80805-3
  48. Palczewski, K., Kumasaka, T., Hori, T., Behnke, C. A., Motoshima, H., Fox, B. A., Le Trong, I., Teller, D. C., Okada, T., Stenkamp, R. E., Yamamoto, M. and Miyano, M. (2000) Crystal structure of rhodopsin: a G-protein-coupled receptor. Science 289, 739-745. https://doi.org/10.1126/science.289.5480.739
  49. Pugh Jr, E. N., Nikonov, S. and Lamb, T. D. (1999) Molecular mechanisms of vertebrate photoreceptor light adaptation. Curr. Opin. Neurobiol. 9, 410-418. https://doi.org/10.1016/S0959-4388(99)80062-2
  50. Schertler, G. F. X., Villa, C. and Henderson, R. (1993) Projection structure of rhodopsin. Nature 362, 770-772. https://doi.org/10.1038/362770a0
  51. Shichi, H. and Somers, R. L. (1978) Light-dependent phosphorylation of rhodopsin. Purification and properties of rhodopsin kinase. J. Biol. Chem. 253, 7040-7046.
  52. Slep, K. C., Kercher, M. A., He, W., Cowan, C. W., Wensel, T. G. and Sigler, P. B. (2001) Structural determinants for regulation of phosphodiesterase by a G protein at 2.0 $\AA$. Nature 409, 1071-1077. https://doi.org/10.1038/35059138
  53. Tesmer, J. J., Berman, D. M., Gilman, A. G. and Sprang, S. R. (1997) Structure of RGS4 bound to $AlF_4^-$ -activated Gi $\alpha$1: stabilization of the transition state for GTP hydrolysis. Cell 89, 251-261. https://doi.org/10.1016/S0092-8674(00)80204-4
  54. Towbin, H., Staehlin, T. and Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350-4354. https://doi.org/10.1073/pnas.76.9.4350
  55. Unger, V. M., Hargrave, P. A., Baldwin, J. M. and Schertler, G. F. (1997) Arrangement of rhodopsin transmembrane $\alpha$-helices. Nature 389, 203-206. https://doi.org/10.1038/38316
  56. Wald, G. and Brown, P. (1953) The molar extinction of rhodopsin. J. Gen. Physiol. 37, 189-200. https://doi.org/10.1085/jgp.37.2.189
  57. Wilkins, J. F., Bitensky, M. W. and Willardson, B. M. (1996) Regulation of the kinetics of phosducin phosphorylation in retinal rods. J. Biol. Chem. 271, 19232-19237. https://doi.org/10.1074/jbc.271.32.19232
  58. Yang, C. -S., Skiba, N. P., Mazzoni, M. R. and Hamm, H. E. (1999) Conformational changes at the carboxyl terminus of G$\alpha$ occur during G protein activation. J. Biol. Chem. 274, 2379-2385. https://doi.org/10.1074/jbc.274.4.2379

Cited by

  1. Enhancing Sensitivity for Atmospheric Pressure Chemical Ionization Mass Spectrometry with a Novel Labeling Reagent: Application for the Analysis of Estrogens Derivatives vol.37, pp.2, 2009, https://doi.org/10.1016/S1872-2040(08)60085-7
  2. Use of 5′-[p-(Fluorosulfonyl)benzoyl] Guanosine as an Affinity Probe for the Guanine Nucleotide-Binding Site of Transducin vol.26, pp.2, 2007, https://doi.org/10.1007/s10930-006-9053-0
  3. 10-Ethyl-acridine-2-sulfonyl Chloride: A New Derivatization Agent for Enhancement of Atmospheric Pressure Chemical Ionization of Estrogens in Urine vol.70, pp.1-2, 2009, https://doi.org/10.1365/s10337-009-1101-4
  4. Correlation of transducin photoaffinity labeling with the specific formation of intermolecular disulfide linkages in its α-subunit vol.108, 2015, https://doi.org/10.1016/j.biochi.2014.11.006
  5. Application of 10-ethyl-acridine-3-sulfonyl chloride for HPLC determination of aliphatic amines in environmental water using fluorescence and APCI-MS vol.32, pp.9, 2009, https://doi.org/10.1002/jssc.200800724
  6. Dye-sensitised preparation of chiral plasmonic Ag nanoparticles on helical polysaccharides vol.25, pp.9-11, 2013, https://doi.org/10.1080/10610278.2013.835049
  7. Role of positive charge of lysine residue on cytochrome c3 for electrostatic interaction with hydrogenase vol.11, pp.01, 2007, https://doi.org/10.1142/S1088424607000096