DOI QR코드

DOI QR Code

Protein-protein Interaction Networks: from Interactions to Networks

  • Cho, Sa-Yeon (Laboratory of Proteome Analysis, Korea Research Institute of Bioscience and Biotechnology) ;
  • Park, Sung-Goo (Laboratory of Proteome Analysis, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Do-Hee (Laboratory of Proteome Analysis, Korea Research Institute of Bioscience and Biotechnology) ;
  • Park, Byoung-Chul (Laboratory of Proteome Analysis, Korea Research Institute of Bioscience and Biotechnology)
  • Published : 2004.01.31

Abstract

The goal of interaction proteomics that studies the protein-protein interactions of all expressed proteins is to understand biological processes that are strictly regulated by these interactions. The availability of entire genome sequences of many organisms and high-throughput analysis tools has led scientists to study the entire proteome (Pandey and Mann, 2000). There are various high-throughput methods for detecting protein interactions such as yeast two-hybrid approach and mass spectrometry to produce vast amounts of data that can be utilized to decipher protein functions in complicated biological networks. In this review, we discuss recent developments in analytical methods for large-scale protein interactions and the future direction of interaction proteomics.

Keywords

References

  1. Bader, G. D., Betel, D. and Hogue, C. W. (2003) BIND: the Biomolecular Interaction Network Database. Nucleic Acids Res. 31, 248-250. https://doi.org/10.1093/nar/gkg056
  2. Boulton, S. J., Gartner, A., Reboul, J., Vaglio, P., Dyson, N., Hill, D. E. and Vidal, M. (2002) Combined functional genomic maps of the C. elegans DNA damage response. Science 295, 127-131. https://doi.org/10.1126/science.1065986
  3. Chervitz, S. A., Hester, E. T., Ball, C. A., Dolinski, K., Dwight, S. S., Harris, M. A., Juvik, G., Malekian, A., Roberts, S., Roe, T. et al. (1999) Using the Saccharomyces Genome Database (SGD) for analysis of protein similarities and structure. Nucleic Acids Res. 27, 74-78. https://doi.org/10.1093/nar/27.1.74
  4. Corbett, J. M., Dunn, M. J., Posch, A. and Gorg, A. (1994) Positional reproducibility of protein spots in two-dimensional polyacrylamide gel electrophoresis using immobilized pH gradient isoelectric focusing in the first dimension: an interlaboratory comparison. Electrophoresis 15, 1205-1211. https://doi.org/10.1002/elps.11501501182
  5. Dandekar, T., Snel, B., Huynen, M. and Bork, P. (1998) Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem. Sci. 23, 324-328. https://doi.org/10.1016/S0968-0004(98)01274-2
  6. Deane, C. M., Salwinski, L., Xenarios, I. and Eisenberg, D. (2002) Protein interactions: two methods for assessment of the reliability of high throughput observations. Mol. Cell Proteomics 1, 349-356. https://doi.org/10.1074/mcp.M100037-MCP200
  7. Enright, A. J., Iliopoulos, I., Kyrpides, N. C. and Ouzounis, C. A. (1999) Protein interaction maps for complete genomes based on gene fusion events. Nature 402, 86-90. https://doi.org/10.1038/47056
  8. Fashena, S. J., Serebriiskii, I. and Golemis, E. A. (2000) The continued evolution of two-hybrid screening approaches in yeast: how to outwit different preys with different baits. Gene 250, 1-14. https://doi.org/10.1016/S0378-1119(00)00182-7
  9. Fields, S. and Song, O. (1989) A novel genetic system to detect protein-protein interactions. Nature 340, 245-246. https://doi.org/10.1038/340245a0
  10. Gavin, A. C., Bosche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick, J. M., Michon, A. M., Cruciat, C. M. et al. (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141-147. https://doi.org/10.1038/415141a
  11. Henzel, W. J., Billeci, T. M., Stults, J. T., Wong, S. C., Grimley, C. and Watanabe, C. (1993) Identifying proteins from twodimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc. Natl. Acad. Sci. USA 90, 5011-5015. https://doi.org/10.1073/pnas.90.11.5011
  12. Ho, Y., Gruhler, A., Heilbut, A., Bader, G. D., Moore, L., Adams, S. L., Millar, A., Taylor, P., Bennett, K., Boutilier, K. et al. (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180-183. https://doi.org/10.1038/415180a
  13. Hoffmann, A., Levchenko, A., Scott, M. L. and Baltimore, D. (2002) The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. Science 298, 1241-1245. https://doi.org/10.1126/science.1071914
  14. Honey, S., Schneider, B. L., Schieltz, D. M., Yates, J. R. and Futcher, B. (2001) A novel multiple affinity purification tag and its use in identification of proteins associated with a cyclin-CDK complex. Nucleic Acids Res. 29, E24. https://doi.org/10.1093/nar/29.4.e24
  15. Huynen, M., Snel, B., Lathe, W. 3rd and Bork, P. (2000) Predicting protein function by genomic context: quantitative evaluation and qualitative inferences. Genome Res. 10, 1204-1210. https://doi.org/10.1101/gr.10.8.1204
  16. Huynen, M. A. and Bork, P. (1998) Measuring genome evolution. Proc. Natl. Acad. Sci. USA 95, 5849-5856. https://doi.org/10.1073/pnas.95.11.5849
  17. Ideker, T., Thorsson, V., Ranish, J. A., Christmas, R., Buhler, J., Eng, J. K., Bumgarner, R., Goodlett, D. R., Aebersold, R. and Hood, L. (2001) Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292, 929-934. https://doi.org/10.1126/science.292.5518.929
  18. Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M. and Sakaki, Y. (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA 98, 4569-4574.
  19. Jansen, R., Greenbaum, D. and Gerstein, M. (2002) Relating whole-genome expression data with protein-protein interactions. Genome Res. 12, 37-46. https://doi.org/10.1101/gr.205602
  20. Loew, L. M. (2002) The Virtual Cell project. Novartis Found. Symp. 247, 151-160; discussion 160-165, 198-206, 244-252.
  21. Loew, L. M. and Schaff, J. C. (2001) The Virtual Cell: a software environment for computational cell biology. Trends Biotechnol. 19, 401-406. https://doi.org/10.1016/S0167-7799(01)01740-1
  22. MacBeath, G. and Schreiber, S. L. (2000) Printing proteins as microarrays for high-throughput function determination. Science 289, 1760-1763.
  23. Marcotte, E. M., Pellegrini, M., Ng, H. L., Rice, D. W., Yeates, T. O. and Eisenberg, D. (1999a) Detecting protein function and protein-protein interactions from genome sequences. Science 285, 751-753. https://doi.org/10.1126/science.285.5428.751
  24. Marcotte, E. M., Pellegrini, M., Thompson, M. J., Yeates, T. O. and Eisenberg, D. (1999b) A combined algorithm for genomewide prediction of protein function. Nature 402, 83-86. https://doi.org/10.1038/47048
  25. McCraith, S., Holtzman, T., Moss, B. and Fields, S. (2000) Genome-wide analysis of vaccinia virus protein-protein interactions. Proc. Natl. Acad. Sci. USA 97, 4879-4884. https://doi.org/10.1073/pnas.080078197
  26. Medzihradszky, K. F., Campbell, J. M., Baldwin, M. A., Falick, A. M., Juhasz, P., Vestal, M. L. and Burlingame, A. L. (2000) The characteristics of peptide collision-induced dissociation using a high-performance MALDI-TOF/TOF tandem mass spectrometer. Anal. Chem. 72, 552-558. https://doi.org/10.1021/ac990809y
  27. Miyawaki, A. (2003) Visualization of the spatial and temporal dynamics of intracellular signaling. Dev. Cell 4, 295-305. https://doi.org/10.1016/S1534-5807(03)00060-1
  28. Mrowka, R., Patzak, A. and Herzel, H. (2001) Is there a bias in proteome research? Genome Res. 11, 1971-1973. https://doi.org/10.1101/gr.206701
  29. Newman, J. R. and Keating, A. E. (2003) Comprehensive identification of human bZIP interactions with coiled-coil arrays. Science 300, 2097-2101. https://doi.org/10.1126/science.1084648
  30. Pandey, A. and Mann, M. (2000) Proteomics to study genes and genomes. Nature 405, 837-846. https://doi.org/10.1038/35015709
  31. Pellegrini, M., Marcotte, E. M., Thompson, M. J., Eisenberg, D. and Yeates, T. O. (1999) Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc. Natl. Acad. Sci. USA 96, 4285-4288. https://doi.org/10.1073/pnas.96.8.4285
  32. Quadroni, M. and James, P. (1999) Proteomics and automation. Electrophoresis 20, 664-677. https://doi.org/10.1002/(SICI)1522-2683(19990101)20:4/5<664::AID-ELPS664>3.0.CO;2-A
  33. Rain, J. C., Selig, L., De Reuse, H., Battaglia, V., Reverdy, C., Simon, S., Lenzen, G., Petel, F., Wojcik, J., Schachter, V., Chemama, Y., Labigne, A. and Legrain, P. (2001) The proteinprotein interaction map of Helicobacter pylori. Nature 409, 211-215. https://doi.org/10.1038/35051615
  34. Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M. and Seraphin, B. (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol. 17, 1030-1032. https://doi.org/10.1038/13732
  35. Sekar, R. B. and Periasamy, A. (2003) Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J. Cell Biol. 160, 629-633. https://doi.org/10.1083/jcb.200210140
  36. Shih, H. M., Goldman, P. S., DeMaggio, A. J., Hollenberg, S. M., Goodman, R. H. and Hoekstra, M. F. (1996) A positive genetic selection for disrupting protein-protein interactions: identification of CREB mutations that prevent association with the coactivator CBP. Proc. Natl. Acad. Sci. USA 93, 13896-13901. https://doi.org/10.1073/pnas.93.24.13896
  37. Slepchenko, B. M., Schaff, J. C., Carson, J. H. and Loew, L. M. (2002) Computational cell biology: spatiotemporal simulation of cellular events. Annu. Rev. Biophys. Biomol. Struct. 31, 423-441. https://doi.org/10.1146/annurev.biophys.31.101101.140930
  38. Stagljar, I., Korostensky, C., Johnsson, N. and te Heesen, S. (1998) A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proc. Natl. Acad. Sci. USA 95, 5187-5192. https://doi.org/10.1073/pnas.95.9.5187
  39. Tong, A. H., Evangelista, M., Parsons, A. B., Xu, H., Bader, G. D., Page, N., Robinson, M., Raghibizadeh, S., Hogue, C. W., Bussey, H., Andrews, B., Tyers, M. and Boone, C. (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294, 2364-2368. https://doi.org/10.1126/science.1065810
  40. Uetz, P., Giot, L., Cagney, G., Mansfield, T. A., Judson, R. S., Knight, J. R., Lockshon, D., Narayan, V., Srinivasan, M., Pochart, P. et al. (2000) A comprehensive analysis of proteinprotein interactions in Saccharomyces cerevisiae. Nature 403, 623-627. https://doi.org/10.1038/35001009
  41. Vidal, M., Brachmann, R. K., Fattaey, A., Harlow, E. and Boeke, J. D. (1996a) Reverse two-hybrid and one-hybrid systems to detect dissociation of protein-protein and DNA-protein interactions. Proc. Natl. Acad. Sci. USA 93, 10315-10320. https://doi.org/10.1073/pnas.93.19.10315
  42. Vidal, M., Braun, P., Chen, E., Boeke, J. D. and Harlow, E. (1996b) Genetic characterization of a mammalian proteinprotein interaction domain by using a yeast reverse two-hybrid system. Proc. Natl. Acad. Sci. USA 93, 10321-10326. https://doi.org/10.1073/pnas.93.19.10321
  43. von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S. G., Fields, S. and Bork, P. (2002) Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417, 399-403.
  44. Walhout, A. J., Sordella, R., Lu, X., Hartley, J. L., Temple, G. F., Brasch, M. A., Thierry-Mieg, N. and Vidal, M. (2000) Protein interaction mapping in C. elegans using proteins involved in vulval development. Science 287, 116-122. https://doi.org/10.1126/science.287.5450.116
  45. Xenarios, I., Rice, D. W., Salwinski, L., Baron, M. K., Marcotte, E. M. and Eisenberg, D. (2000) DIP: the database of interacting proteins. Nucleic Acids Res. 28, 289-291. https://doi.org/10.1093/nar/28.1.289
  46. Yang, M., Wu, Z. and Fields, S. (1995) Protein-peptide interactions analyzed with the yeast two-hybrid system. Nucleic Acids Res. 23, 1152-1156. https://doi.org/10.1093/nar/23.7.1152
  47. Zhu, H., Bilgin, M., Bangham, R., Hall, D., Casamayor, A., Bertone, P., Lan, N., Jansen, R., Bidlingmaier, S., Houfek, T., Mitchell, T., Miller, P., Dean, R. A., Gerstein, M. and Snyder, M. (2001) Global analysis of protein activities using proteome chips. Science 293, 2101-2105. https://doi.org/10.1126/science.1062191

Cited by

  1. Tackling the plant proteome: practical approaches, hurdles and experimental tools vol.39, pp.5, 2004, https://doi.org/10.1111/j.1365-313X.2004.02182.x
  2. Capillary electrophoresis of signaling molecules vol.21, pp.9, 2007, https://doi.org/10.1002/bmc.867
  3. Molecular motions in drug design: the coming age of the metadynamics method vol.25, pp.5, 2011, https://doi.org/10.1007/s10822-011-9415-3
  4. Filamentous temperature-sensitive Z (FtsZ) isoforms specifically interact in the chloroplasts and in the cytosol of Physcomitrella patens vol.176, pp.2, 2007, https://doi.org/10.1111/j.1469-8137.2007.02169.x
  5. The potential of proteomics and peptidomics for allergy and asthma research vol.60, pp.10, 2005, https://doi.org/10.1111/j.1398-9995.2005.00873.x
  6. Boolean modeling of biological regulatory networks: A methodology tutorial vol.62, pp.1, 2013, https://doi.org/10.1016/j.ymeth.2012.10.012
  7. Interaction Proteomics vol.25, pp.1-2, 2005, https://doi.org/10.1007/s10540-005-2847-z
  8. A Split Enhanced Green Fluorescent Protein-Based Reporter in Yeast Two-Hybrid System vol.26, pp.2, 2007, https://doi.org/10.1007/s10930-006-9051-2
  9. Intermolecular interactions of the malate synthase of Paracoccidioides spp vol.13, pp.1, 2013, https://doi.org/10.1186/1471-2180-13-107
  10. Managing genomic and proteomic knowledge vol.2, pp.3, 2005, https://doi.org/10.1016/j.ddtec.2005.08.001
  11. Capturing protein–protein complexes at equilibrium: The holdup comparative chromatographic retention assay vol.50, pp.1, 2006, https://doi.org/10.1016/j.pep.2006.06.010
  12. Intracellular complexes of the 2 subunit of the nicotinic acetylcholine receptor in brain identified by proteomics vol.104, pp.51, 2007, https://doi.org/10.1073/pnas.0710314104
  13. The use of enzyme mixtures for complex biosyntheses vol.15, pp.5, 2004, https://doi.org/10.1016/j.copbio.2004.08.012
  14. Fluorescence-Based Cloning of a Protein Tyrosine Kinase with a Yeast Tribrid System vol.6, pp.8, 2005, https://doi.org/10.1002/cbic.200500047
  15. Identifying biological pathways that underlie primordial short stature using network analysis vol.52, pp.3, 2014, https://doi.org/10.1530/JME-14-0029
  16. Emerging tools for real-time label-free detection of interactions on functional protein microarrays vol.272, pp.21, 2005, https://doi.org/10.1111/j.1742-4658.2005.04971.x
  17. Functional proteomics vol.357, pp.2, 2005, https://doi.org/10.1016/j.cccn.2005.03.019
  18. Proteomics in evolutionary ecology: linking the genotype with the phenotype vol.21, pp.5, 2012, https://doi.org/10.1111/j.1365-294X.2011.05426.x
  19. Capillary electrophoresis at the omics level: Towards systems biology vol.27, pp.1, 2006, https://doi.org/10.1002/elps.200500511
  20. Surface plasmon resonance imaging analysis of protein–protein interactions using on-chip-expressed capture protein vol.351, pp.2, 2006, https://doi.org/10.1016/j.ab.2006.01.042
  21. Role and challenges of proteomics in pharma and biotech: technical, scientific and commercial perspective vol.3, pp.2, 2006, https://doi.org/10.1586/14789450.3.2.179
  22. Unbiased Protein Association Study on the Public Human Proteome Reveals Biological Connections between Co-Occurring Protein Pairs vol.16, pp.6, 2017, https://doi.org/10.1021/acs.jproteome.6b01066
  23. parasites through proteomics and implications for the clinic vol.15, pp.5, 2018, https://doi.org/10.1080/14789450.2018.1468754