DOI QR코드

DOI QR Code

Anticarcinogenic Effects of Sargassum fulvellum Fractions on Several Human Cancer Cell Lines in vitro

모자반 분획물의 in vitro에서의 항발암효과

  • 배송자 (신라대학교 식품영양학과/마린-바이오 산업화지원센터)
  • Published : 2004.03.01

Abstract

Despite many therapeutic advances in the understanding of the processes in carcinogenesis, overall mortality statistics are unlikely to change until there is reorientation of the concepts for the use of natural products as new anticarcinogenic agents. In this study, we investigated the anticarcinogenic activity, antioxidant and DPPH scavenging activity of Sargassum fulvellum (SF). SF was extracted with methanol, which was further fractionated into five different types: hexane (SFMH), ethylether (SFMEE), ethyl acetate (SFMEA), butanol (SFMB) and aqueous (SFMA) partition layers. We determined the cytotoxic effect of these layers on human cancer cells by MTT assay. Among various partition layers of SF, at starting concentration of 100 $\mu\textrm{g}$/mL, SFMEE showed very high cytotoxicity which were 92, 90 and 84% and kept high throughout 5 concentration levels sparsed by 100 $\mu\textrm{g}$/mL against all three human cancer cell lines: HepG2, HT-29 and HeLa. SFMEA showed a low cytotoxicity at the beginning concentration level, but as the concentration became denser, growth inhibition effect of cancer cell lines started to increase and at 500 $\mu\textrm{g}$/mL, it hit the highest, which were 91, 96 and 98% against the same three cell lines as above. We observed QR induced effect in all fraction layers of SF. SFMEE showed similar tendensy of QR induced effect as did against cytotoxicity. The QR induced effect of SFMEE on HepG2 cells at 25 $\mu\textrm{g}$/mL concentration indicated 3 times higher than the control value of 1.0 and SFMH tended to be concentration-dependent on HepG2 cells. At 100 $\mu\textrm{g}$/mL, the QR induced effects resulted a ratio, which was 2.5 times higher than the control value. In search for antioxidation effects of SF extract and partition layer, the reducing activity on the 1, 1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging potential was sequentially screened. The SFM has similar antioxidant activity as to BHT and vitamin C groups.

식용 해조류의 일종인 모자반을 추출, 분획 하여 in vitro에서의 항발암효과를 실험하였다. 모자반을 추출, 분획하여 3종의 암세포주(HepG2, HT-29, HeLa)를 이용하여 암세포 독성 효과를 본 결과, 모자반의 ethylether 분획층(SFMEE)과 ethylacetate분획층(SFMEA)에서 3종의 사용 암세포주인 HepG2, HT29 및 HeLa 모두 아주 높은 cytotoxicity를 보였으며, HT29와 HeLa에서는 mathanol 추출물(SFM)과 hexane 분획층(SFMH)에서도 유의적인 암세포 독성 효과를 나타내었다. 정상세포인 liver세포는 모자반의 모든 용매 분획층에서 암세포 독성효과가 낮게 나타났다. 이상과 같이 3종의 암세포에 대한 독성 실험에서 전반적으로 SFMEE층과 EFMEA층에 월등히 높은 암세포 독성 물질이 존재함을 알 수 있었다. 한편 인체 간암세포주인 HepG2를 이용하여 QR 효소 유도 활성 여부를 측정한 결과 SFMEE층은 아주 낮은 초기 첨가 농도인 25 $\mu\textrm{g}$/mL에서, 대조군에 비해 이미 2.89배의 높은 QR 유도 활성 효과를 보였고, SFMH층은 농도의존적으로 그 효과가 증가하여 최종 농도인 100 $\mu\textrm{g}$/mL에서 2.50배의 QR 유도 활성효과를 나타내었다. 모자반의 DPPH radical 소거능을 실험 하였으며 모자반의 메탄을 추출물의 DPPH 소거능 결과는 대조군인 항산화제인 BHT와 Vit C의 결과와 유사하였다. 본 실험의 결과로 모자반은 메탄올 추출물속에 DPPH소거능을 가진 물질이 존재하고 있으며 이 결과는 모자반의 in vitro 항발암활성을 설명하는데 그 기초배경이 될 수 있다. 본 실험 결과를 종합 검토해 보면 모자반 추출물과 용매별 각 분획 층에서의 암세포 독성 효과는 주로 비극성 분획층에서 높게 나타났으며, QR유도 활성 효과도 비극성 분획층인 SFMEE층과 SFMH층에서 나타났다. 특히 SFMEE층은 적은 농도에서 암세포 독성 효과, QR 유도 활성 효과를 나타내었으며 이 연구결과에 대한 단계적인 물질의 분리 동정이 이루어져 SFMEE층에서의 유용한 생리활성물질 개발이 기대되는 바이다.

Keywords

References

  1. Stavric B. 1994. Role of chemopreventers in human diet. Clin Biochem 27: 319-325. https://doi.org/10.1016/0009-9120(94)00039-5
  2. Reddy L, Odhav B, Bhoola KD. 2003. Natural products for cancer prevention: a global perspective. Pharmacology & Therapeutics 99: 1-13. https://doi.org/10.1016/S0163-7258(03)00042-1
  3. Doll R, Peto R. 1981. The cause of cancer. Quantitative estimates of available risks of cancer in the United States today. J Natl Cancer Inst 66: 1192-1308.
  4. Sharma S, Stutzman JD, Kelloff GJ, Steele VE. 1994. Screening of potential chemopreventive agents using biochemical markers of carcinogenesis. Cancer Res 54: 5848-5855.
  5. Schwartsmann G, Rocha AB, Berlinck GS, Jimeno J. 2001. Marine organisms as a souce of new anticancer agents. Oncology 2: 221-225. https://doi.org/10.1159/000214620
  6. Krinsky NI. 1991. Effects of carotenoids in celluar and animal systems. Am J Clin Nutr 53: 238S-246S.
  7. Dunlap WC, YAmamoto Y. 1995. Small-molecule antioxidants in marine organism: antioxidant activity of mycosporine-glycine. Comp Biochem Physiol 112B: 105-114.
  8. Ryu BH, Kim DS, Cho KJ, Sin DB. 1989. Antitumor activity of seaweeds toward sarcoma-180. Korean J Food Sci Technol 21: 595-600.
  9. Park YB, Kim IS, Yoo SJ, Ahn JK, Lee TG, Park DC, Kim SB. 1998. Elucidation of anti-tumor initiator and promoter derived from seaweed-2: investigation of seaweed extracts suppressing mutagenic activity of PhIP and MeIQx. J Korean Fish Soc 31: 581-586.
  10. Talalay P, Benson AM. 1982. Elvation of quinone reductase activity by anticarcinogenic antioxidants. Advances in Enzyme Regulation 20: 287-300. https://doi.org/10.1016/0065-2571(82)90021-8
  11. Wefers H, Komai T, Talalay P, Sies H. 1984. Protection against reactive oxygen species by NAD(P)H: quinone reductase induced by the dietary antioxidant butylated hydroxyanisole (BHA). Federation of European Biochemical Societies 169: 63-66. https://doi.org/10.1016/0014-5793(84)80290-2
  12. Steinkellner HS, Rabot C, Freywald E, Nobis G, Scharf M, Chabicovsky S, Knasmȕller, F. Kassie. 2001. Effects of crucifrous vegetable and their constituents on drug metabolizing enzymes involved in the bioactivation of DNAreactive dietary carcinogens. Mutation Research 481: 285-297.
  13. Shon H YH, Nam K. 2001. Antimutagenicity and induction of anticarcinogenic phase II enzymes by basidiomycetes. J Ethnopharmacology 77: 103-109. https://doi.org/10.1016/S0378-8741(01)00276-8
  14. Shim SM, Kim MH, Bae SJ. 2001. Cytotoxicity and quinone reductase induced effects of Daucus carota L. leaf extracts on human cancer cell. J Korean Soc Food Sci Nutr 30: 86-91
  15. Bae SJ. 2002. The effects of anticarcinogenic activity of Solanum uberosum peel fractions. J Korean Soc Food Sci Nutr 31: 905-909. https://doi.org/10.3746/jkfn.2002.31.5.905
  16. Lee BH, Choi BW, Chun JH, Yu BS. 1996. Extraction of water soluble antioxidants from seaweeds. J Korean Ind Eng Chemistry 7: 1069-1077.
  17. Ryu BH, Kim DS, Cho KJ, Sin DB. 1989. Antitumor activity of seaweeds toward sarcoma-18. Korean J Food Sci Technol 21: 595-600.
  18. Koo JG, Jo KS, Do JR, Park JH, Yang CB. 1995. Chemical properties of fucoidans from hizikia fusiformis and Sargassum fulvellum. J Korean Fish Soc 28: 659-666.
  19. Nishino T, Yokoyama G, Dobashi K, Fujihara M, Nagumo T. 1989. Isolation, purification, and characterization of fucose-containing sulfated polysaccharides from the brown sea, Ecklonia kurome and their blood-anticoagulant activities. Carbohydr Res 186: 119-129. https://doi.org/10.1016/0008-6215(89)84010-8
  20. Carmichael J, De Graff WG, Gazder AF, Minna JD, Mitchell JB. 1987. Evalution of a tetrazolium based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res 47: 936-942.
  21. Prochaska HJ, Santamaria AB. 1988. Direct measurement of NAD(P)H: Quinone reductase from cells cultured in microtiter wells: A screening assay for anticarcinogenic enzyme in ducers. Anal Biochem 169: 328-336. https://doi.org/10.1016/0003-2697(88)90292-8
  22. Park HJ. 1998. Induction of quinone reductase and its regulatory mechanism at the transcriptional level by Scutellaria baicalensis. PhD Dissertation. Yonsei University, Seoul.
  23. Jung MJ, Chung HY, Kang SS, Choi JH, Bae KS, Choi JS. 2003. Antioxidant activity from the stem bark of Albizzia julibrissin. Arch Pharm Res 26: 458-462. https://doi.org/10.1007/BF02976862
  24. Shim SM, Choi SW, Bae SJ. 2001. Effets of Punica granatum L. Fraction on quinone reductase induction and growth inhibition on several cancer cells. J Korean Soc Food Sci Nutr 30: 80-85.
  25. Park JH, Kang KC, Baek SB, Lee YH, Rhee KS. 1991. Separation of antioxidant compounds from edible marine algae. Korean J Food Sci Technol 23: 256-261.
  26. Ramos A, Visozo A, Piloto J, Garcia A, Rodriguez CA, Rivero R. 2003. Screening of antimutagenicity via antioxidnat activity in Cuban medicinal plants. J Ethnopharmacology 87: 241-246. https://doi.org/10.1016/S0378-8741(03)00156-9

Cited by

  1. Inhibitory Effect of Sargauum fulvellum Ethanolic Extract on LPS-Induced Inflammatory Reaction in RAW 264.7 Mouse Macrophages vol.56, pp.4, 2013, https://doi.org/10.3839/jabc.2013.040
  2. Anti-inflammatory Activity of the Water Extract of Sargassum fulvellum vol.27, pp.6, 2012, https://doi.org/10.7841/ksbbj.2012.27.6.325
  3. α-Glucosidase Inhibitory Effects for Solvent Fractions from Methanol Extracts of Sargassum fulvellum and Its Antioxidant and Alcohol-Metabolizing Activities vol.22, pp.10, 2012, https://doi.org/10.5352/JLS.2012.22.10.1420
  4. Anti-inflammatory Effect of Ethanol Extract from Sargassum fulvellum on Lipopolysaccharide Induced Inflammatory Responses in RAW 264.7 Cells and Mice Ears vol.43, pp.8, 2014, https://doi.org/10.3746/jkfn.2014.43.8.1158
  5. Synergistic Antimicrobial Effect of Sargassum serratifolium (C. Agardh) C. Agardh Extract against Human Skin Pathogens vol.48, pp.3, 2016, https://doi.org/10.9721/KJFST.2016.48.3.241
  6. Effect of Hizikia fusiforme Extracts on Antioxidant Enzyme Activity and Vitamin E Concentration in Rats vol.40, pp.11, 2011, https://doi.org/10.3746/jkfn.2011.40.11.1556
  7. The effect ofSargassum confusumon reduction of body fat in obese women vol.47, pp.1, 2014, https://doi.org/10.4163/jnh.2014.47.1.23
  8. Comparison Study of Immunomodulatory Activity of Polysaccharide and Ethanol Extracted from Sargassum fulvellum vol.44, pp.11, 2015, https://doi.org/10.3746/jkfn.2015.44.11.1621
  9. 김 분획물의 in vitro에서의 항발암효과 vol.34, pp.10, 2004, https://doi.org/10.3746/jkfn.2005.34.10.1514
  10. 김 분획물의 in vitro에서의 항발암효과 vol.34, pp.10, 2004, https://doi.org/10.3746/jkfn.2005.34.10.1514
  11. 미역귀 분획물의 항균 · 암세포 성장저지 효과 vol.34, pp.6, 2005, https://doi.org/10.3746/jkfn.2005.34.6.765
  12. 불등가사리 분획물의 암세포 성장 억제 효과 vol.34, pp.6, 2004, https://doi.org/10.3746/jkfn.2005.34.6.771
  13. 불등가사리 분획물의 암세포 성장 억제 효과 vol.34, pp.6, 2004, https://doi.org/10.3746/jkfn.2005.34.6.771
  14. 홍경천의 항산화 · 항발암 효과 연구 vol.34, pp.9, 2005, https://doi.org/10.3746/jkfn.2005.34.9.1302
  15. 참가사리 분획물의 암 예방효과 vol.35, pp.4, 2006, https://doi.org/10.3746/jkfn.2006.35.4.395
  16. 참곱슬이(Plocamium telfairiae) 추출물의 암세포 성장억제 효과 vol.16, pp.4, 2006, https://doi.org/10.5352/jls.2006.16.4.659
  17. 7종 갈조류의 항돌연변이 및 인체 암세포 증식 억제 효과 vol.16, pp.7, 2004, https://doi.org/10.5352/jls.2006.16.7.1080
  18. 짝잎모자반(Sargassum hemiphyllum)의 암세포주 증식 억제 및 항산화 효과 vol.17, pp.11, 2004, https://doi.org/10.5352/jls.2007.17.11.1533
  19. 해양 유래 한약재의 여드름균에 대한 항균 효능 연구 vol.25, pp.2, 2010, https://doi.org/10.6116/kjh.2010.25.2.065
  20. 모자반(Sargassum fulvellum) 추출물 첨가에 의한 빵의 저장성 및 품질증진 효과 vol.40, pp.6, 2011, https://doi.org/10.3746/jkfn.2011.40.6.867
  21. 35종 해조류 추출물의 병원성 세균 및 Candida sp. 진균에 대한 항균 활성 평가 vol.40, pp.2, 2004, https://doi.org/10.4014/kjmb.1203.03005
  22. Anti-Inflammatory Effects of Grasshopper Ketone from Sargassum fulvellum Ethanol Extract on Lipopolysaccharide-Induced Inflammatory Responses in RAW 264.7 Cells vol.29, pp.5, 2004, https://doi.org/10.4014/jmb.1901.01027