Synthesis of Thermosensitive and Biodegradable Methoxy Poly(ethylene glycol)-Polycaprolactone and Methoxy Poly(ethylene glycol)-Poly(lactic acid) Block Copolymers

온도감응 및 생분해성 폴리에틸렌 글리콜-폴리카프로락톤과 폴리에틸렌 글리콜-폴리락타이드 공중합체의 합성

  • 서광수 (전북대학교 고분자ㆍ나노공학과) ;
  • 박종수 (전북대학교 고분자ㆍ나노공학) ;
  • 김문석 (한국화학연구원 나노생체의료고분자) ;
  • 조선행 (한국화학연구원 나노생체의료고분자) ;
  • 이해방 (한국화학연구원 나노생체의료고분자) ;
  • 강길선 (전북대학교 고분자ㆍ나노공학과)
  • Published : 2004.05.01

Abstract

The sol to gel transition of aqueous solution of block copolymers consisting of methoxy poly (ethylene glycol) (MPEG) and biodegradable polyesters such as $\varepsilon$-caprolactone and L-lactide was investigated as a function of temperature. MPEG-PCL was prepared by ring opening polymerization of $\varepsilon$-caprolactone in the presence of HClㆍEt$_2$O as monomer activator at room temperature. Also, MPEG-PLLA was prepared by ring opening polymerization of L-lactide in the presence of stannous octoate at 115$^{\circ}C$. The properties of block copolymers were investigated by $^1$H-NMR, IR, and GPC as well as the observation of thermo sensitive phase transition in aqueous solution. As the hydrophobic block length increased, the sol to gel transition temperature increased and curve of that steepen to lower concentration. To confirm the gel formation at body temperature, we observed the formation of gel in the mice body after injection of 20 wt% aqueous solution of each block copolymer. After surging, we investigated the gelation in mice. The results obtained in this study confirmed the feasibility as biomaterials of injectable implantation for controlled release of drug and protein delivery.

메톡시 폴리(에털렌 글러콜)과 생분해성 폴리에스테르 계열의 카프로락톤 그러고 락타이드로 구성된 블록 공중합체를 수용액 상에서 온도에 따른 솔-젤 전이 현상을 연구하였다. 폴러(에틸렌 글리콜)-폴리카프로락톤 (MPEG-PCL)은 HCI${\cdot}Et_{2}O$촉매 존재 하에서 실온에서 반응 용매로서 메틸렌클로라이드를 사용하여 카프로락톤기 개환을 통하여 합성되었다. 또한, 폴리(에틸렌 글리콜)-폴리(락틱 에시드) (MPEG-PLLA)는 촉매로서 stannous octoate를 사용하여 톨루엔에서 115${\circ}C$에서 중합을 실시하였다. 합성된 블록 고분자는 $^1$H-NMR, IR 그리고 GPC 뿐만 아니라 수용액상에서의 온도 감응성 상전이 형상을 관찰함으로써 그 특성을 분석하였다. 소수기의 사슬길이가 증가함에 따라 솔-젤 전이 온도가 증가하였고 상전이 곡선은 낮은 농도로 급격한 기울기의 증가가 일어났다. 인체온도에서 젤 형성을 확인하기 위하여, 각각의 블록 공중합체 MPEG-PCL과 MPEG-PLLA를 수용액에 20 wt% 농도로 준비하여 쥐에 주입한 후 신체에서의 젤 형성을 확인하였다. 본 연구를 통하여 블록 공중합체가 약물과 단백질의 주사형 이식형제제 등의 생체용 재료로서 가능성을 가지고 있음을 확인하였다.

Keywords

References

  1. Nature v.373 G.H.Chen;A.S.Hoffman https://doi.org/10.1038/373049a0
  2. Nature v.372 R.Yoshida;K.Uchida;Y.Kaneko;K.Sakai;A.Kikuchi;Y.Sakurai;T.Okano
  3. Nature v.354 I.C.Kwon;Y.H.Bae;S.W.Kim https://doi.org/10.1038/354291a0
  4. Macromolecules v.28 C.S.Brazel;N.A.Peppas https://doi.org/10.1021/ma00128a007
  5. Makromol. Chem. Rapid Common. v.8 Y.H.Bae;T.Okano;R.Hsu;S.W.Kim
  6. Macromolecules v.27 A.Gutowska;Y.H.Bae;H.Jacob;J.Feijen
  7. Macromolecules v.25 H.Feil;Y.H.Bae;J.Feijen;S.W.Kim https://doi.org/10.1021/ma00046a049
  8. Nature v.388 B.Jeong;Y.H.Bae;D.S.Lee;S.W.Kim https://doi.org/10.1038/42218
  9. J. Pharm. Sci. v.85 R.Bhardwaj;J.Blanchard https://doi.org/10.1021/js960097g
  10. Pharma. Res. v.18 Y.J.Kim;S.Choi;J.J.Koh;M.Lee;K.S.Ko;S.W.Kim https://doi.org/10.1023/A:1011074915438
  11. J. Control. Rel. v.63 B.Jeong;Y.H.Bae;S.W.Kim https://doi.org/10.1016/S0168-3659(99)00194-7
  12. J. Biomed. Mater. Res. v.50 B.Jeong;Y.H.Bae;S.W.Kim https://doi.org/10.1002/(SICI)1097-4636(200005)50:2<171::AID-JBM11>3.0.CO;2-F
  13. Acta Physiol. Scand. v.73 F.Berglund
  14. J. Parm. Sci. v.79 N.Marcotte.;A.Polk;M.Goosen https://doi.org/10.1002/jps.2600790509
  15. Macromolecules v.29 Y.W.Yang;Z.Yang;Z.K.Zhou;D.Attwood;C.Booth https://doi.org/10.1021/ma951259i
  16. Macromolecules v.25 M.Malmsten;B.Lindman https://doi.org/10.1021/ma00046a050
  17. Int. J. Pharm. v.22 M.Vadnere;G.Amidon;S.Lindenbaum;J.L.Haslam https://doi.org/10.1016/0378-5173(84)90022-X
  18. Adv. Drug. Deliv. Rev. v.54 B.Jeong;Y.H.Bae;S.W.Kim https://doi.org/10.1016/S0169-409X(01)00242-3
  19. J. Appl. Polym. Sci. v.90 W.Lee;R.Chiu https://doi.org/10.1002/app.12881
  20. J. Parenteral Sci. Technol. v.46 Z.Wout;E.A.Pec;J.A.Maggiore;R.H.Williams;P.Palicharla;T.P.Johnston
  21. Atherosclerosis v.136 W.K.Palmer;E.E.Emeson;T.P.Johston https://doi.org/10.1016/S0021-9150(97)00193-7
  22. Kor. Polym. J. v.9 G.Khang;C.S.Park;J.M.Rhee;S.J.Lee;Y.M.Lee;M.K.Choi;H.B.Lee;I.Lee
  23. Polymer Sci. Tech. v.12 G.Khang;J.M.Rhee;J.S.Lee;H.B.Lee
  24. Polymer v.26 H.S.Seong;D.S.Moon;G.Khang;H.B.Lee
  25. Polymer v.26 T.K.An;H.J.Kang;D.S.Moon;J.S.Lee;H.S.Seong;J.K.Jeong;G.Khang;H.B.Lee
  26. Int. J. Pharm. v.234 H.S.Choi;G.Khang;H.Shin;J.M.Rhee;H.B.Lee https://doi.org/10.1016/S0378-5173(01)00968-1
  27. J. Biomed. Mater. Res. v.42 H.Suh;B.Jeong;R.Rathi;S.W.Kim https://doi.org/10.1002/(SICI)1097-4636(199811)42:2<331::AID-JBM19>3.0.CO;2-L
  28. J. Polym. Sci., Part A: Polym. Chem. v.37 B.Jeong;D.S.Lee;J.Shon;Y.H.Bae;S.W.Kim https://doi.org/10.1002/(SICI)1099-0518(19990315)37:6<751::AID-POLA10>3.0.CO;2-0
  29. Macromolecules v.32 B.Jeong;Y.H.Bae;S.W.Kim https://doi.org/10.1021/ma9908999
  30. J. Polym. Sci., Part A: Polym. Chem. v.37 S.W.Choi;S.Y.Choi;B.Jeong;S.W.Kim;D.S.Lee https://doi.org/10.1002/(SICI)1099-0518(19990701)37:13<2207::AID-POLA35>3.0.CO;2-0
  31. Polymer v.40 M.H.Kang;Y.H.Bae https://doi.org/10.1016/S0032-3861(98)00822-2
  32. J. Control. Rel. v.32 Y.X.Li;V.Christian;T.Kissel https://doi.org/10.1016/0168-3659(94)90050-7
  33. Kor. Polym. J. v.8 Y.K.Sung;S.W.Kim
  34. Polymer v.39 B.Bogdanov;A.Vidits;A.Van Den Buicke;R.Verbeeck;E.Schacht https://doi.org/10.1016/S0032-3861(97)00444-8
  35. Biomaterials v.24 Y.Hu;X.Jiang;Y.Ding;L.Zhang;C.Yang;J.Zhang;J.Chen;Y.Yang https://doi.org/10.1016/S0142-9612(03)00021-8
  36. J. Control. Rel. v.65 S.Y.Kim;J.C.Ha;Y.M.Lee https://doi.org/10.1016/S0168-3659(99)00207-2
  37. Biomaterials v.22 S.Y.Kim;Y.M.Lee;H.J.Shin;J.S.Kang https://doi.org/10.1016/S0142-9612(00)00393-8
  38. Biomaterials v.22 S.Y.Kim;Y.M.Lee https://doi.org/10.1016/S0142-9612(00)00292-1
  39. Macromolecules v.33 Y.Shibasaki;H.Sanada;M.Yokoi;F.Sanda;T.Endo https://doi.org/10.1021/ma992138b
  40. Macromolecules v.35 F.Sanda;H.Sanada;Y.Shibasaki;T.Endo https://doi.org/10.1021/ma011341f