Vinyl Addition Polymerization Behavior of Poly(5-hexyl-2-norbornene-co-5-methylester-2-norbornene)s Using Cationic ${\eta}^3$-Allyl Palladium Catalyst

양이온성 ${\eta}^3$-알릴 팔라듐 촉매를 사용한 폴리(5-헥실-2-노보넨-co-5-메틸에스터-2-노보넨)의 비닐 부가 중합 거동

  • 안재철 (한국과학기술연구원 광전자재료 연구센터) ;
  • 박기홍 (한국과학기술연구원 광전자재료 연구센터)
  • Published : 2004.05.01

Abstract

We synthesized the vinyl addition-type polynorbomene copolymers using two monomers [5-hexyl-2-norbornene (HNB) and 5-methyleste-2-norbornene(MES-NB)] by means of a cationic ${\eta}^3$-allyl palladium catalyst system{[(${\eta}^3$-allyl)palladium(tricyclohexylphosphine) trifluoroacetate] and [lithium tetrakis(pentafluorophenyl) borate ${\cdot}$2.5 etherate]}. The molecular weights and yields of copolynorbomenes polymerized in various conditions were measured to investigate an optimum polymerization conditions to obtain highly ester-functionalized polynorbomenes. As a Pd catalyst content increased, the molecular weights (Mw) of polymers decreased while polymer yields increased. Also, as a Li cocatalyst content increased, the Mw’s and yields of polymers increased at the same time. The Mw’s of copolymers were also controlled by chain transfer agents such as 1-hexone, 1-octene and 1-decene, and we found that longer 1-decene and 1-octene were more efficient to reduce the Mw’s of polynorbornenes than 1-hexene. On the other hand, the content of chain transfer agents did not give influence significantly on polymer yields. From the $^1$H-NMR and GPC analysis of HNB/MES-NB(feed ratio of 40/60 mol%) copolymer, we found that this copolymer had an about 25 mol% of ester portion and a high molecular weight of 270,000.

5-헥실-2-노보넨 (HNB)과 5-메틸에스터-2-노보넨 (MES-NB)을 양이온 ${\eta}^3$-알릴 팔라듐 촉매인 [(${\eta}^3$-allyl) palladium(tricyclohexylphosphine) trifluoroacetate]와 리튬계 조촉매 [lithium tetrakis(pentafluorophenyl( borate${\cdor}$2.5etherate]를 사용하여 비닐 부가형의 폴리노보넨 공중합체를 합성하였다. 에스터기를 과량 함유한 폴리노보넨을 제조하기 위한 최적 중합 조건을 조사하기 위하여 여러가지 중합조건에 따른 분자량변화와 수율의 변화를 알아보았다. 팔라듐 촉매의 함량이 많을수록 수득율은 증가하는 한편, 분자량은 감소하였으며, 리튬조촉매의 함량은 많을수록 분자량과 수득율이 동시에 증가하였다. 사슬이동체를 이용하여 분자량을 조절할 수 있었고, 사슬이동제의 길이가 긴 1-데센과 1-옥텐이 1-헥센보다 분자량을 더 감소시키는 역할을 하였다. 한편 사슬이동제의 양은 수율에 큰 영향을 미치지 않았다. HNB/MES-NB(투입비 40/60 mol%)의 공종합체의 $^1$H-NMR 과 GPC 분석으로부터, 실제 에스터 함유량으 약 25mol%인 고분자량 (M$_{w}$ : 270,000)의 폴리노보넨 공중합체가 얻어짐을 알 수 있었다.

Keywords

References

  1. Sci. Chem. v.A1 J.P.Kennedy;H.S.Makowski
  2. J. Macromol. Sci. Chem. v.A11 N.G.Gaylord;A.B.Deshpande;B.M.Mandal;M.Martan
  3. Macromolecules v.20 R.R.Schrock;J.Feldman;L.F.Cannizzo;R.H.Grubbs https://doi.org/10.1021/ma00171a054
  4. J. Polym. Sci. v.A32 V.Heroguez;M.Fontanille
  5. J. Am. Chem. Soc. v.108 P.schwab;R.H.Grubbs;J.W.Ziller
  6. Organometallics v.18 J.L.Burmaghim;G.S.Girolami https://doi.org/10.1021/om980434r
  7. Polym. Bull. v.31 W.Kaminsky;A.Noll https://doi.org/10.1007/BF00329963
  8. Macromolecules v.31 D.Ruchatz;G.Fink https://doi.org/10.1021/ma971042j
  9. Makromol. Chem. Macromol. Symp. v.89 B.L.Goodall;L.H.McIntoshIII;L.F.Rhodes https://doi.org/10.1002/masy.19950890139
  10. Organometallics v.20 A.Hennis;J.Polley;G.Long;S.Sen https://doi.org/10.1021/om010232m
  11. Macromolecules v.35 J.Lipian;R.A.Mimna;J.C.Fondran;D.Yandulov;R.A.Shick;B.L.Goodall;L.F.Rhodes https://doi.org/10.1021/ma0209287
  12. Polymer v.27 J.C.Ahn;S.H.Park;K.H.Lee;K.H.Park
  13. Macromol. Chem. Phys. v.197 T.F.A.Haselwander;W.Heitz;S.A.Krugel;J.H.Wendorff https://doi.org/10.1002/macp.1996.021971029
  14. U.S. Pat., 6455650 J.H.Lipian;L.F.Rhodes;B.L.Goodall;A.Bell;R.A.Mimna;J.C.Fondran;S.Jayaraman;A.D.Hennis;C.N.Elia;J.D.Polley;A.Sen
  15. Polymer v.28 K.B.Yoon;D.H.Lee