초록
반도체 공정은 많은 단위 공정으로 이루어진 복잡하고 동적인 공정이다. 그 중 에칭공정은 반도체 생산에서 중요한 공정중 하나이다. 본 논문에서는 데이터 마이닝과 지식 획득을 통한 의사지원시스템으로 생산성과 수율을 높일 수 있는 시스템을 구성하고자 하였다. 제안된 방법은 퍼지 논리와 신경망으로 구성되는데, 신경망으로 에칭공정의 품질을 나타내는 품질에 대한 결과를 예측하고, 예측된 결과를 퍼지 추론 시스템으로 분류하는 과정으로 수행된다. 퍼지 논리에 사용된 규칙은 전문가의 지식에 기반 하여 도출되거나 데이터로부터 도출된다. 본 시스템을 통해 공정의 최적 조건을 찾아 효율을 높이는 것이 본 연구의 주요 목표이다.
A semiconductor manufacturing process is the complicate and dynamic process, and consists of many sub-processes. An etching process is the most important process in the semiconductor fabrication. In this paper, the decision support system based upon data mining and knowledge discovery is an important factor to improve the productivity and yield. The proposed decision support system consists of a neural network model and an inference system based on fuzzy logic Firstly, the product results are predicted by the neural network model constructed by the product patterns that represent the quality of the etching process. And the product patters are classified by expert's knowledge. Finally, the product conditions are estimated by the fuzzy inference system using the rules extracted from the classified patterns. Prediction of product qualities can be linked to each input and process variables. We employ data mining and intelligent techniques to find the best condition of the etching process. The proposed decision support system is efficient and easy to be implemented for the process management based upon expert's knowledge.