DOI QR코드

DOI QR Code

Observer Design for Multi-Output Unobservable Nonlinear Systems

관측가능하지 않은 다중출력 비선형 시스템의 관측기 설계기법

  • 조남훈 (숭실대학교 전기제어시스템공학부)
  • Published : 2004.07.01

Abstract

The observer design problem is studied for a class of multi-output nonlinear systems that are not necessarily observable. Generalized nonlinear observer canonical form is introduced for multi-output nonlinear systems to design nonlinear observers. Sufficient conditions are given for a nonlinear system to be transformed by state-space change of coordinates into generalized nonlinear observer canonical form. Based on this canonical from, a sufficient condition is also given for the existence of nonlinear observers. An illustrative example is presented to show the design procedure of the proposed method.

References

  1. A.Isidori, Nonlinear Control Systems, Springer -Verlag, Berlin, 1989
  2. H. Nijmeijer and A. J. van der Schaft, Nonlinear Dynamical Control Systems, Springer-Verlag, Berlin, 1990
  3. A. J. Krener, and A. Isidori, 'Linearization by output injection and nonlineat observers,' Systems and Control Letters, vol. 3, pp. 47-52, 1983 https://doi.org/10.1016/0167-6911(83)90037-3
  4. A. J. Krener and W. Respondek, 'Nonlinear observers with linearizable error dynamics,' SIAM Journal on Control and Optimization, vol. 23, pp. 197-216, 1985 https://doi.org/10.1137/0323016
  5. X. H. Xia and W. B. Gao, 'Nolinear observer design by observer error linearization,' SIAM Journal on Control and Optimization, vol. 27, pp. 199-216, 1989 https://doi.org/10.1137/0327011
  6. J. Rudolph and M. Zeitz, 'A block triangular nonlinear observer normal form,' Systems and Control Letters, vol. 23, pp. 1-8, 1994 https://doi.org/10.1016/0167-6911(94)90075-2
  7. N. H. Jo, and J. H. Seo, 'Input output linearization approach to state observer design for nonlinear systems,' IEEE Trans. Automat. Contr., vol. 45, pp. 2388-2393, 2000 https://doi.org/10.1109/9.895580
  8. N. H. Jo and J. H. Seo, 'Observer design for nonlinear systems that are not uniformly observable,' Int. J. Contr., vol. 75, no. 5, pp. 369-380, 2002 https://doi.org/10.1080/00207170110112287
  9. R. Marino and P. Tomei, Nonlinear Control Design (Prentice Hall, London: 1995)