Three Dimensional Vibration Analysis of Thick, Circular and Annular Plates with Nonlinear Thickness Variation

비선형 두께 변분을 갖는 두꺼운 원형판과 환형판의 3차원적 진동해석

  • 장승환 (중앙대학교 공과대학 기계공학부) ;
  • 심현주 (중앙대학교 공과대학 건축공학) ;
  • 강재훈 (중앙대학교 공과대학 건축학부)
  • Published : 2004.06.01

Abstract

A three dimensional (3D) method of analysis is presented for determining the free vibration frequencies and mode shapes of thick, circular and annular plates with nonlinear thickness variation along the radial direction. Unlike conventional plate theories, which are mathematically two dimensional (2D), the present method is based upon the 3D dynamic equations of elasticity. Displacement components u/sub s/, u/sub z/, and u/sub θ/ in the radial, thickness, and circumferential directions, respectively, are taken to be sinusoidal in time, periodic in θ, and algebraic polynomials in the s and z directions. Potential (strain) and kinetic energies of the plates are formulated, and the Ritz method is used to solve the eigenvalue problem thus yielding upper bound values of the frequencies by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Convergence to four digit exactitude is demonstrated for the first five frequencies of the plates. Numerical results we presented for completely free, annular and circular plates with uniform linear, and quadratic variations in thickness. Comparisons are also made between results obtained from the present 3D and previously published thin plate (2D) data.

3차원 해석법을 이용하여 반경방향으로 비선형적 두께 변분을 가진 두꺼운 원형판과 환형판의 고유진동수를 결정하였다. 수학적으로 2차원적인 전통적 판 이론과는 달리 본 연구에서는 3차원적 등 탄성방정식을 근간으로 하였다. 반경방향, 두께방향, 원주방향으로의 변위 성분인 u/sub s/, u/sub z/, u/sub θ/를 시간에 대해서는 정현적으로, θ에 대해서는 주기적으로, s와 z방향으로는 대수 다항식의 형태로 취하였다. 판의 위치(변형률) 에너지와 운동 에너지를 정식화하고, 리츠법을 이용하여 고유치 문제를 해결하였으며, 진동수의 최소화과정을 통해 엄밀해에 대해서 상위경계치의 진동수를 구하였다. 다항식의 차수를 증가시키면 진동수는 엄밀해에 수렴하게 된다. 판의 최하위 5개의 진동수에 대한 유효숫자 4자리까지의 수렴성 연구가 이루어졌다. 수치결과로 두께가 일정하거나, 선형적 또는 2차 곡선적 변분을 갖는 자유경계의 두꺼운 원형판과 환형판의 무차원 진동수를 제공하였다. 또한 이미 발표된 2차원적인 박판이론에 의한 결과와 본 연구의 3차원 해석에 의한 결과를 서로 비교하였다.

Keywords

References

  1. Mindlin, R. D., 'Influence of Rotatory Inertial and Shear on Flexural Motions of Isotropic, Elastic Plates,' Journal of Applied Mechanics, Vol. 18, 1951, pp. 31-38
  2. Deresievicz, H. and Midlin, R. D., 'Axially Symmetric Flexural Vibrations of a Circular Disk,' Journal of Applied Mechanics, Vol. 22, 1955, pp. 86-88
  3. Hutchinson, J. R., 'Axisymmetric Flexural Vibrations of a Thick Free Circular Plate,' Journal of Applied Mechanics, Vol. 46, 1979, pp. 139-144 https://doi.org/10.1115/1.3424485
  4. Hutchinson, J. R., 'Vibrations of Thick Free Circular Plates, Exact Versus Approximate Solutions,' Journal of Applied Mechanics, Vol. 51, 1984, pp. 581-585 https://doi.org/10.1115/1.3167677
  5. Hutchinson, J. R. and El‐Azhari, S. A., 'On the Vibration of Thick Annular Plates,' Refined Dynamical Theories of Beams, Plates, and Shells and Their Applications, Proceedings of the Euromech‐Colloquium, Vol. 219, 1986, pp. 102-111
  6. So, J. and Leissa, A. W., 'Three‐Dimensional Vibrations of Thick Circular and Annular Plates,' Journal of Sound and Vibration, Vol. 209, 1998, pp. 15-41 https://doi.org/10.1006/jsvi.1997.1228
  7. Ye, J. Q., 'Axisymmetric Vibration of Laminated Annular Plates Composed of Transversely Isotropic Layers,' Journal of Sound and Vibration, Vol. 205, 1997, pp. 250-256 https://doi.org/10.1006/jsvi.1997.0966
  8. Liew, K. M. and Yang, B.,'Three‐Dimensional Elasticity Solutions for Free Vibrations of Circular Plates: a Polynomials‐Ritz Analysis,' Computer Methods in Applied Mechanics and Engineering, Vol. 175, 1999, pp. 189-201 https://doi.org/10.1016/S0045-7825(98)00368-5
  9. Ding, H.‐J. and Xu, R.‐Q., 'Free Axisymmetric Vibration of Laminated Transversely Isotropic Annular Plates,' Journal of Sound and Vibration, Vol. 230, No. 5, 2000, pp. 1031-1044 https://doi.org/10.1006/jsvi.1999.2666
  10. Liew, K. M. and Yang, B., 'Elasticity Solutions for Free Vibrations of Annular Plates from Three‐Dimensional Analysis,' International Journal of Solids and Structures, Vol. 37, 2000, pp. 7689-7702 https://doi.org/10.1016/S0020-7683(99)00306-6
  11. Liu, C.‐F. and Lee. Y.‐T., 'Finite Element Analysis of Three‐Dimensional Vibrations of Thick Circular and Annular plates,' Journal of Sound and Vibration, Vol. 233, No. 1, 2000, pp. 63-80 https://doi.org/10.1006/jsvi.1999.2791
  12. Liu, C.‐F., Lee, J.‐F., and Lee, Y.‐T., 'Axisymmetric Vibraion Analysis of Rotating Annular Plates by a 3D Finite Element,' International Journal of Solids and Structures, Vol. 37, 2000, pp. 5813-5827 https://doi.org/10.1016/S0020-7683(99)00256-5
  13. Kang, J.‐H. and Leissa, A. W., 'Three‐Dimensional Vibrations of Thick, Linearly Tapered, Annular Plates,' Journal of Sound and Vibration, Vol. 217, No. 5, 1998, pp. 927-944 https://doi.org/10.1006/jsvi.1998.1803
  14. Leissa, A. W., Vibration of Plates, NASA SP 160; U.S. Government Printing Office, 1969 (Reprinted by The Acoustical Society of America, 1993)
  15. Leissa, A. W., 'Recent Research in Plate Vibration, 1973‐1976: Complicating Effects,' The Shock and Vibration Digest, Vol. 10, 1978, pp. 21-35
  16. Leissa, A. W., 'Plate Vibration Research, 1976 1980: Complicating Effects,' The Shock and Vibration Digest, Vol. 13, 1981, pp. 19-36
  17. Leissa, A. W., 'Recent Studies in Plate Vibrations, 1981‐1985: Part II Complicating Effects,' The Shock and Vibration Digest, Vol. 19, 1987, pp. 10-24
  18. Singh, B. and Chakraverty, S., 'Transverse Vibration of Circular and Elliptic Plates with Variable Thickness,' Indian Journal of Pure and Applied Mathematics, Vol. 22, 1991, pp. 787-803
  19. Singh, B. and Chakraverty, S., 'Transverse Vibration of Completely Free Elliptic and Circular Plates Using Orthogonal Polynomials in the Rayleigh‐Ritz Method,' International Journal of Mechanical Sciences, Vol. 33, 1991, pp. 741-751 https://doi.org/10.1016/0020-7403(91)90069-F
  20. Singh, B. and Chakraverty, S., 'Transverse Vibration of Circular and Elliptic Plates with Quadratically Varying Thickness,' Applied Mathematical Modellings, Vol. 16, 1992, pp. 269-274 https://doi.org/10.1016/0307-904X(92)90019-Y
  21. Singh, B. and Chakraverty, S., 'On the Use of Orthogonal Polynomial in the Rayleigh‐Ritz Method for the Study of Transverse Vibration of Elliptic Plates,' Computers and Structures, Vol. 43, 1992, pp. 439-443 https://doi.org/10.1016/0045-7949(92)90277-7
  22. Singh, B. and Chakraverty, S., 'Transverse Vibration of Simply Supported Elliptical and Circular Plates Using Boundary Characteristic Orthogonal Polynomials in Two Variables,' Journal of Sound and Vibration, Vol. 152, 1992, pp. 149-155 https://doi.org/10.1016/0022-460X(92)90071-5
  23. Singh, B. and Chakraverty, S., 'Use of Characteristic Orthogonal Polynomials in Two Dimensions for the Transverse Vibration of Elliptical and Circular Plates with Variable Thickness,' Journal of Sound and Vibration, Vol. 173, 1994, pp. 289-299 https://doi.org/10.1006/jsvi.1994.1231
  24. Singh, B. and Saxena, V., 'Axisymmetric Vibration of a Circular Plate with Double Linear Variable Thickness,' Journal of Sound and Vibration, Vol. 179, No. 5, 1995, pp. 879-897 https://doi.org/10.1006/jsvi.1995.0059
  25. Gutierrez, R. H., Romanelli, E., and Laura, P. A. A., 'Vibrations and Elastic Stability of Thin Circular Plates with Variable Profile,' Journal Sound and Vibration, Vol. 195, No. 3, 1996, pp. 391-399 https://doi.org/10.1006/jsvi.1996.0433
  26. Wang, J., 'Generalized Power Series Solutions of the Vibration of Classical Circular Plates with Variable Thickness,' Journal of Sound and Vibration, Vol. 202, No. 4, 1997, pp. 593-599 https://doi.org/10.1006/jsvi.1996.0810
  27. Singh, B. and Hassan, S. M., 'Transverse Vibration of a Circular Plate with Arbitrary Thickness Variation,' International Journal of Mechanical Sciences, Vol. 40, No. 11, 1998, pp. 1089-1104 https://doi.org/10.1016/S0020-7403(98)00008-3
  28. Ye, Z., 'Appication of Maple V to the Nonlinear Vibration Analysis of Circular Plate with Variable Thickness,' Computer and Structures, Vol. 71, 1999, pp. 481-488 https://doi.org/10.1016/S0045-7949(98)00302-2
  29. Kang, J.‐H., 'Three‐Dimensional Vibration Analysis of Thick Shells of Revolution with Arbitrary Curvature and Variable Thickness,' Ph.D. Dissertation, The Ohio State University, 1997
  30. Kantorovich, L. V. and Krylov, V. I., Approximate Methods in Higher Analysis, Groningen, Noordhoff, 1958
  31. Ritz, W., '$\ddot{U}$ber Eine Neue Methode Zur L$\ddot{o}$sung Gewisser Variationsprobleme der Mathematischen Physik,' Journal für die Reine und Angewandte Mathematik, Vol. 135, 1909, pp. 1-61
  32. Ramaiah, G. K. and Vijaykumar, K., 'Vibrations of Annular Plates with Linear Thickness Profiles,' Journal of Sound and Vibration, Vol. 40, 1975, pp. 293-298 https://doi.org/10.1016/S0022-460X(75)80251-3
  33. Leissa, A. W., Vibration of Shells, NASA SP 288, U.S. Government Printing Office, 1973 (Reprinted by The Acoustical Society of America, 1993)
  34. Narita, Y. and Leissa, A. W., 'Vibrations of Completely Free Shallow Shells of Rectangular Planform,' Journal of Sound and Vibration, Vol. 96, No. 2, 1984, pp. 207-218 https://doi.org/10.1016/0022-460X(84)90579-0
  35. McGee, O, G. and Leissa, A. W., 'Three‐Dimensional Free Vibrations of Thick Skewed Cantilever Plates,' Journal of Sound and Vibration, Vol. 144, 1991, pp. 305-322, Errata Vol. 149, pp. 539-542