Dental Restorative Composite Resins Containing Asymmetric Spiro Orthocarbonate for the Reduction of Volumetric Shrinkage

비대칭 스파이로 오르토카보네이트가 포함된 저수축 치아 수복재

  • 황미선 (중앙대학교 공과대학 화학공학과) ;
  • 김창근 (중앙대학교 공과대학 화학공학과)
  • Published : 2004.07.01

Abstract

The applications of dental restorative composite resins containing 2,2-bis [4-(2-hydroxy-3-me-thacryloyloxy propoxy) phenyl] propane as a base resin, and triethylene glycol dimethacrylate, as a diluent, were often limited in dentistry due to the relatively large amount of volumetric shrinkage that occurs during the curing reaction. In this study, in order to reduce volumetric shrinkage of the current dental restorative composite resin, asymmetric spiro orthocarbonates were synthesized and then the characteristics of resin composites containing them were explored. The volumetric shrinkage of the dental composites containing spiro orthocarbonates was decreased approximately 45%. However, the curing characteristics and mechanical properties of the new dental composites were slightly poor than those of the commercially available dental composite.

2,2 bis 〔4-(2-hydroxy-3-methacryloyloxypropoxy)phenyl〕propane을 기본 단량체, triethylene glycol dimethacrylate를 희석제로 포함하고 있는 고분자계 치아 수복재는 중합 수축률에서의 문제점으로 인하여 사용에 제약을 받아오고 있다. 본 연구에서는 기존 고분자계 치아 수복제의 문제점인 중합 수축률을 감소시키기 위해 중합시 부피 팽창이 기대되는 비대칭 스파이로 오쏘카보네이트를 합성하고, 이를 포함하는 새로운 치아 수복재를 제조하여 이의 특성을 시험하였다. 스파이로 오쏘카보네이트를 포함하는 새로운 치아 수복재의 중합 수축율은 약45% 감소하여 우수한 체적 안정성을 나타내었다. 그러나 새로운 치아 수복재의 중합특성, 기계적 물성 등은 기존 치아 수복재에 비해 다소 저하되었다.

Keywords

References

  1. Oper. Dent. v.4 E. H. Greener
  2. J. Am. Dent. Assoc. v.92 G. M. Donadl;D. W. Orson https://doi.org/10.14219/jada.archive.1976.0177
  3. J. Am. Dent. Assoc. v.92 D. P. Leonard;M. C. Ellse https://doi.org/10.14219/jada.archive.1976.0156
  4. J. Prosthet. Dent. v.55 J. W. Osborne;S. J. Friedman https://doi.org/10.1016/0022-3913(86)90115-0
  5. J. Am. Dent. Assoc. v.28 I. C. Schoonover;W. Sounder https://doi.org/10.14219/jada.archive.1941.0194
  6. Oper. Dent. v.16 E. L. Pashley;R. W. Comer;E. E. Parry;D. H. Pashley
  7. J. Prosthet. Dent. v.59 M. Staninec;M. Holt https://doi.org/10.1016/0022-3913(88)90030-3
  8. J. Am. Dent. Assoc. v.66 R. L. Bowen https://doi.org/10.14219/jada.archive.1963.0010
  9. J. Apply. Polym. Sci. v.42 M. S. Sheela;K. T. Selvy https://doi.org/10.1002/app.1991.070420301
  10. Science of Dental Materials R. W. Phillips
  11. Dent. Mater. v.1 H. Shintani;T. Inoue;M. Yamaki https://doi.org/10.1016/S0109-5641(85)80002-6
  12. J. Dent. Res. v.69 K. H. Chung https://doi.org/10.1177/00220345900690030401
  13. Polym. Prepr. ;Am. Chem. So., Div. Polym. Chem. v.13 W. J. Bailey;R. L. Sun
  14. J. Polym. Sci. Polym. Lett. Ed. v.18 T. Endo;W. J. Bailey https://doi.org/10.1002/pol.1980.130180106
  15. J. Polym. Sci. Polym. Chem. Ed. v.19 T. Endo;M. Okawara;N. Yamazaki;W. J. Bailey https://doi.org/10.1002/pol.1981.170190526
  16. J. Appl. Polym. Sci. v.30 K. Tanigaki;K. Saigo;Y. Ohnishi;H. Kato;K. Mizutani;T. Ogasawara;T. Endo https://doi.org/10.1002/app.1985.070300409
  17. US Patent 4, 387, 215 W. J. Bailey
  18. Macromolecules v.34 I. Fukuchi;F. Sanda;T. Endo https://doi.org/10.1021/ma001993o
  19. J. Appl. Polym. Sci. v.76 C. C. Chappelow;C. S. Pinzino;L. Jeang;C. D. Harris;A. J. Holder;J. D. Eick https://doi.org/10.1002/(SICI)1097-4628(20000613)76:11<1715::AID-APP13>3.0.CO;2-R
  20. J. Mater. Sci. Lett. v.18 C. S. Wang https://doi.org/10.1023/A:1006668117964
  21. J. Polym. Sci., Part A: Polym. Chem. v.32 F. Sanda;T. Takata;T. Endo https://doi.org/10.1002/pola.1994.080320214
  22. J. Dent. Res. v.71 J. W. Stansbury https://doi.org/10.1177/00220345920710070901
  23. Ph.D. Dissertation, The University of Maryland J. W. Stansbury
  24. Polymer(Korea) v.17 K. H. Chae;G. J. Sun;Y. J. Park
  25. Polymer(Korea) v.23 G. J. Sun;Y. J. Park;K. H. Chae