DOI QR코드

DOI QR Code

WSi2 word-line 및 bit-line용 spacer-Si3N4 박막의 증착

Deposition of Spacer-Si3N4 Thin Film for WSi2 Word-Line and Bit-Line

  • 안승준 (선문대학교 자연과학대학 신소재과학과) ;
  • 김대욱 (선문대학교 자연과학대학 신소재과학과) ;
  • 김종해 (선문대학교 공과대학 전자정보통신공학과) ;
  • 안성준 (선문대학교 공과대학 전자정보통신공학과) ;
  • 김영정 (선문대학교 공과대학 재료공학과) ;
  • 김호섭 (선문대학교 자연과학대학 신소재과학과)
  • Ahn S. (Department of Physics and Advanced Material Science, Sun Moon University) ;
  • Kim D.W. (Department of Physics and Advanced Material Science, Sun Moon University) ;
  • Kim J.H (Division of Electronics, I&C Engineering, Sun Moon University) ;
  • Ahn S.J. (Division of Electronics, I&C Engineering, Sun Moon University) ;
  • Kim Y.J. (Division of Materials Engineering, Sun Moon University) ;
  • Kim H.S. (Department of Physics and Advanced Material Science, Sun Moon University)
  • 발행 : 2004.06.01

초록

$WSi_2$, $TiSi_2$, $CoSi_2$, and $TaSi_2$ are general silicides used today in semiconductor devices. $WSi_2$ thin films have been proposed, studied and used recently in CMOS technology extensively to reduce sheet resistance of polysilicon and $n^{+}$ region. However, there are several serious problems encountered because $WSi_2$ is oxidized and forms a native oxide layer at the interface between $WSi_2$ and $Si_3$$N_4$. In this study, we have introduced 20 $slm-N_2$ gas from top to bottom of the furnace in order to control native oxide films between $WSi_2$ and $Si_3$$N_4$ film. In resulting SEM photographs, we have observed that the native oxide films at the surface of $WSi_2$ film are removed using the long injector system.

키워드

참고문헌

  1. J. M. Lopez-Soler, V. Sanchez, A. de la Torre, A. J. Rubio-Ayuso, Speech Communication, 34, 333 (2001) https://doi.org/10.1016/S0167-6393(00)00039-X
  2. H. Lin, C. H. Sha, S. C. Wong, Solid-State Electronics, 46, 145 (2002) https://doi.org/10.1016/S0038-1101(01)00259-3
  3. L. Krusin-Elbaum, M. O. Aboelfotoh, T. Lin and K. Y. Ahn, Thin Solid Films, 153, 348 (1987) https://doi.org/10.1016/0040-6090(87)90195-7
  4. M. F. Bain, B. M. Armstrong, H. S. Gamble, Vacuum, 64, 227 (2002) https://doi.org/10.1016/S0042-207X(01)00315-3
  5. B. Sell, A. Sanger, G. Schulze-Icking, K. Pomplun, W. Krautschneider, Thin Solid Films, 443, 97 (2003) https://doi.org/10.1016/S0040-6090(03)00922-2
  6. M. Itoh, H. Itoh, N. Hirashita, M. Kinoshita and T. Ajioka, Applied Surface Science, 56-58, 540 (1992) https://doi.org/10.1016/0169-4332(92)90285-6
  7. S. G. Telford, C. M. Tseng and M. Aruga, J. of Fluorine Chemistry, 87, 123 (1998) https://doi.org/10.1016/S0022-1139(97)80372-7
  8. J. D. Plummer, M. Deal, P. B. Griffin, Silicon VLSI Technology, Prentice Hall, New Jersey, (2000)
  9. T. I. Kamins, J. of Electrochem. Soc. 121, 681 (1974) https://doi.org/10.1149/1.2401887
  10. D. W. Foster, A. J. Learn, and T. I. Kamins, J. of Vac. Sci. Technology B, 4, 1182 (1986) https://doi.org/10.1116/1.583480
  11. G. Harbeke, L. Krausbauer, E. F. Steigmeier, A. E. Widmer, H. F. Kappert, and G. Neugebauer, J. of Electrochem. Soc. 131, 675 (1984) https://doi.org/10.1149/1.2115672
  12. Y. D. Lin, Y. S. Wu, C. W. Chao, G. R. Hu, Materials Chem. and Phys., 80, 577 (2003) https://doi.org/10.1016/S0254-0584(03)00108-1
  13. P. Agarwal, M. Kostana, S. C. Agarwal, S. M. Pietruszko, J. of Non-Crystalline Solids, 227-230, 328 (1998) https://doi.org/10.1016/S0022-3093(98)00174-4
  14. T. Mohammed-Brahim, K. Kis-Sion, D. Briand, M. Sarret, O. Bonnaud, J. P. Kleider, C. Longeaud, B. Lambert, J. of Non-Crystalline Solids, 227-230, 962 (1998) https://doi.org/10.1016/S0022-3093(98)00346-9
  15. S. S. Ang, Y. J. Shi and W. D. Brown, Microelectronics and Reliability, 34, 909 (1994) https://doi.org/10.1016/0026-2714(94)90015-9
  16. S. Yokoyama, M. Hirose and Y. Osaka, Jpn. J. of Appl. Phys. 20, 35 (1981) https://doi.org/10.1143/JJAP.20.L35
  17. G. A. Armstrong, J. R. Ayres and S. D. Brotherton, Solid-State Electronics, 41, 835 (1997) https://doi.org/10.1016/S0038-1101(97)00053-1