DOI QR코드

DOI QR Code

이산화티탄이 코팅된 알루미나 볼에서 광촉매 반응에 의한 기상벤젠의 분해

Decomposition of Gas-Phase Benzene on TiO2 Coated Alumina Balls by Photocatalytic Reaction

  • 이남희 (세종대학교 나노기술연구소/나노공학과) ;
  • 정상철 (순천대학교 토목환경공학부) ;
  • 선일식 (한국화학시험연구원 유해성평가본부) ;
  • 조덕호 (기술표준원 광전재료과) ;
  • 신승한 (한국생산기술연구원 나노표면기술팀) ;
  • 김선재 (세종대학교 나노기술연구소/나노공학과)
  • Lee Nam-Hee (Sejong Advanced Institute of Nano Technologies/ Department of Nano Science and Technology, Sejong University) ;
  • Jung Sang-Chul (Department of Civil and Environment Engineering, Sunchon National University) ;
  • Sun Il-Sik (Hazard Evaluation Headquarters, Korea Testing and Research Institute for Chemical Industry) ;
  • Cho Duk-Ho (Optical and Electronic Materials Division, Korea Agency for Technology and Standards) ;
  • Shin Seung-han (Nano Surface Technology Team, Korea Institute of Industrial Technology) ;
  • Kim Sun-Jae (Sejong Advanced Institute of Nano Technologies/ Department of Nano Science and Technology, Sejong University)
  • 발행 : 2004.06.01

초록

Photo decomposition of gas phase benzene by $TiO_2$ thin films chemically deposited on alumina balls were investigated under UV irradiation. Photo decomposition rates were measured in real time during the reaction using a photo ionization detector, which ionizes C-H bonding of benzene molecules and then converts into volatile organic compounds (VOCs) concentrations. From the measuring results, the VOCs concentration increased instantly when IN irradiated because C-H bonds of benzene molecules strongly absorbed on the surface of $TiO_2$ films before the IN irradiation was destroyed by photo decomposition. After that, the VOCs concentration decreased with increasing surface area of $TiO_2$ and reaction time under the IN irradiation. At the optimal conditions for the photo decomposition of gas phase benzene, the reaction rate of the photo decomposition for high concentrations (over 60 ppm) was slow but that of relatively low concentration (under 60 ppm) was fast, due to limited surface area of $TiO_2$ thin films for the reaction. Thus, it is concluded that the photo decomposition rate was mainly affected by the surface area of $TiO_2$ or absorption reaction.

키워드

참고문헌

  1. EPA: 'Total Exposure assessment methodology(TEAM) study' Report 600/6-87/002a. Environmental Protection Agency, Washington DC. (1987)
  2. K. D. Liu, Evaluation of VOC management and control, Industrial Pollution Prevention Control 48(15), (1993)
  3. C. E. Minero, S. Pellizzetto, J. Malato and P. Blanco, Large Solar Plant, 26, 2103-2119 (1993)
  4. S. H. Yeom, Marcella C. F. Dalm, and J. Daugulis, Biotech. Letter 22, 1747-1751 (2000) https://doi.org/10.1023/A:1005689917744
  5. A. Fujisshima and K. Honda, Nature 37(8), 238 (1972)
  6. R. E. Hayes, S. T. Kolaczkowski and W. J. Thomas, Computer Chemical Engineering, 16, 645-57 (1992) https://doi.org/10.1016/0098-1354(92)80014-Z
  7. M. M. Hossain, G. B. Raupp, S. O. Hay and T. N. Obee, AIChE Journal 45, 1309-1321 (1999) https://doi.org/10.1002/aic.690450615
  8. S. A. Larson, J. A. Widegren and J. L. Falconer, Journal of Catalysis 157, 611-625 (1995) https://doi.org/10.1006/jcat.1995.1326
  9. O. d'Hennezel, P. Pichat and D. F. Ollis, Journal of Photochemistry and Photobiology A: Chemistry 118, 197-204 (1998) https://doi.org/10.1016/S1010-6030(98)00366-9
  10. D. Chen and A. K. Ray, Applied Catalysis B: Environmental 23, 143-157 (1999) https://doi.org/10.1016/S0926-3373(99)00068-5
  11. S. J. Jung, S. C. Kim and S. G. Seo, HWAHAK KONGHAK 39(4), 385-389 (2001)
  12. D. G. Byun, Y. K. Jin, B. J. Kim, J. K. Lee and D. K. Park, Journal of Hazardous Materials B73, 199-206 (2000) https://doi.org/10.1016/S0304-3894(99)00179-X
  13. O. d'Hennezel, P. Pichat and D. F. Ollis, Journal of Photochemistry and Photobiology A: Chemistry 118, 197-204 (1998) https://doi.org/10.1016/S1010-6030(98)00366-9
  14. M. Murabayashi, K. Itoh, K. Togashi, K. Shiozawa and H. Yamazaki, In: Proceeding of the Third International Conference on $TiO_2$ photocatalytic Purification and Treatment of Water and Air, 127-135 (1997)
  15. N. Fukami, M. Yosida, B. D. Lee, K. Taku and M. Hosomi, Chemosphere 42, 345-350 (2001) https://doi.org/10.1016/S0045-6535(00)00140-5
  16. T. N. Obee, Environmental Science and Technology 30, 3578-3584 (1992) https://doi.org/10.1021/es9602713
  17. J. A. Zhao and X. D. Yang, Building Environment 38, 645-654 (2003) https://doi.org/10.1016/S0360-1323(02)00212-3