DOI QR코드

DOI QR Code

Influence of GaAs/AlGaAs Superlattice Layers on Optical Properties of InAs Quantum Dots

InAs 양자점의 광학적 성질에 미치는 초격자층의 영향

  • 정연길 (인제대학교 대학원 광대역정보통신학과, 나노공학과 나노기술응용연구소) ;
  • 최현광 (인제대학교 대학원 광대역정보통신학과, 나노공학과 나노기술응용연구소) ;
  • 박유미 (인제대학교 대학원 광대역정보통신학과, 나노공학과 나노기술응용연구소) ;
  • 황숙현 (인제대학교 대학원 광대역정보통신학과, 나노공학과 나노기술응용연구소) ;
  • 윤진주 (인제대학교 대학원 광대역정보통신학과, 나노공학과 나노기술응용연구소) ;
  • 이제원 (인제대학교 대학원 광대역정보통신학과, 나노공학과 나노기술응용연구소) ;
  • 임재영 (인제대학교 대학원 광대역정보통신학과, 나노공학과 나노기술응용연구소) ;
  • 전민현 (인제대학교 대학원 광대역정보통신학과, 나노공학과 나노기술응용연구소)
  • Published : 2004.02.01

Abstract

We investigated the effects of high potential barriers on the optical characteristics of InAs quantum dots (QDs) by using photoluminescence (PL) and photoreflectance (PR) spectroscopy. A sample with regular InAs quantum dots on GaAs was grown by molecular beam epitaxy (MBE) as a reference. Another InAs QDs sample was embedded in single AlGaAs barriers. On the other hand, a sample with GaAs/AlGaAs superlattice barriers was adopted for comparison with a sample with a single AlGaAs layer. In results, we found that the emission wavelength of QDs was effectively tailored by using high potential barriers. Also, it was found that the optical properties of a sample with QDs embedded in GaAs/AlGaAs superlattices were better than those of a sample with QDs embedded in a single layer of AlGaAs barriers. We believe that GaAs/AlGaAs superlattice could effectively prevent the generation of defects.

Keywords

References

  1. K. Nishi, H. Saito, S. Sugou and J.S. Lee, Appl. Phys. Lett., 74, 1111 (1999) https://doi.org/10.1063/1.123459
  2. D. Bimberg, M. Grundmann and N. N. Ledentsov, Quantum Dot Heterostructures, Wiley, New york, 1 (1998)
  3. J.J. Finley, M. Skalitz, M. Arzberger, A. Zrenner, G. Bohm and G. Abstreiter, Appl. Phys. Lett., 73, 2618 (1998) https://doi.org/10.1063/1.122524
  4. M. Arzberger, U. Ksberger, G. Bhm and G. Abtreiter, Appl. Phys. Lett., 75, 3968 (1999) https://doi.org/10.1063/1.125509
  5. C. H. Roh, Y. J. Park, K. M. Kim, Y. M. Park, E. K. Kim, K. B. Shim, J. Crystal. Growth, 226, 1-7 (2001) https://doi.org/10.1016/S0022-0248(01)00815-6
  6. V. Aroutiounian, S. Petrosyan and A. Khachatryan, J. Appl. Phys., 89, 2268 (2001) https://doi.org/10.1063/1.1339210
  7. A. J. Nozik, Physica E, 14, 115-120 (2002) https://doi.org/10.1016/S1386-9477(02)00374-0
  8. J. Tatebayashi, M. Nishioka, Y. Arakawa, J. Crystal. Growth, 237-239, 1296-1300 (2002) https://doi.org/10.1016/S0022-0248(01)02048-6
  9. S. J. Xu, X. C. Wang and S. J. Chua, Appl. Phys. Lett., 72, 3335 (1998) https://doi.org/10.1063/1.121595
  10. K. Yamaguchi, T. Kaizu, K. Yujobo and Y. Saito, J. Crystal. Growth, 237-239, 1301-1306 (2002) https://doi.org/10.1016/S0022-0248(01)02051-6
  11. M. J. da Silva, A. A. Quivy, S. Martini, T. E. Lamas, E. C. F. da Silva and J. R. Leite, J. Crystal. Growth, 251, 181-185 (2003) https://doi.org/10.1016/S0022-0248(02)02405-3
  12. X. Q. Meng, B. Xu, P. Jin, X. L. Ye, Z. Y. Zhang, C. M. Li and Z. G. Wang, J. Crystal. Growth, 243, 432-438 (2002) https://doi.org/10.1016/S0022-0248(02)01535-X
  13. F. Ferdos, M. Sadeghi, Q. X. Zhao, S. M. Wang and A. Larsson, J. Crystal. Growth, 227-228, 1140-1145 (2001) https://doi.org/10.1016/S0022-0248(01)01003-X
  14. Y. Nakata, K. Mukai, M. Sugawara, K. Ohtsubo, H. Ishikawa, N. Yokoyama, J. Crystal. Growth, 208, 93-99 (2000) https://doi.org/10.1016/S0022-0248(99)00466-2
  15. H. Saito, K. Nishi and S. Sugou, Appl. Phys. Lett., 73, 2742 (1998) https://doi.org/10.1063/1.122576
  16. Y. S. Kim, U. H. Lee and D. Lee, J. Appl. Phys., 87, 241 (2000) https://doi.org/10.1063/1.371851
  17. J. S. Kim, P. W. Yu, J. Y. Leem, J. I. Lee, S. K. Noh, J. S. Kim, S. M. Kim, J. S. Son, Appl. Phys. Lett., 78, 3247 (2001) https://doi.org/10.1063/1.1373410
  18. L. Rebohle, F. F. Sehrey and S. Hofer, Physiea E, 17,42-45 (2003) https://doi.org/10.1016/S1386-9477(02)00732-4
  19. M. Grundmann, N. N. Ledentsov, O. Stier, J. Bohrer, D. Bimberg, V.M. Ustinov, P.S. Kop'ev, Zh.I Alferov, Phys. Rev. B, 53, R10509 (1995) https://doi.org/10.1103/PhysRevB.53.R10509
  20. D. Bimberg, M. Grundmann and N.N. Ledentsov, 'Quantum Dot Heterostructures', Wiley, New york, 125 1998
  21. A. Patan, A. Polimeni, M. Capizzi and F. Martelli, Phys. Rev. B, 52, 2784 (1995) https://doi.org/10.1103/PhysRevB.52.2784
  22. D.H. Lee, D.Lee, H.G. Lee, S.K. Noh, J.Y. Leem and H.J. Lee, Appl. Phys. Lett., 74, 1597 (1999) https://doi.org/10.1063/1.123628
  23. Peter Y. Yu, Manuel Cardona, 'Fundamentals of Semiconductors,' Springer, Germany, 473 1996
  24. D. Y. Lee, J. S. Kim, D. L. Kim and K. H. Kim, J. Crystal. Growth, 243, 66-70 (2002) https://doi.org/10.1016/S0022-0248(02)01478-1
  25. M. Geddo, M. Capizzi and A. Patane, Appl. Phys. Lett., 84, 3374 (1998)
  26. G. Sek, J. Misiewicz and K. Ryczko, Sol. State Communications, 110, 657-660 (1999) https://doi.org/10.1016/S0038-1098(99)00144-1
  27. L. Aigouy, T. Holden and F. H. Pollak, Appl. Phys. Lett., 70, 3329 (1997) https://doi.org/10.1063/1.119160
  28. J. S. Kim, P. W. Yu, J. Y. Leem and M. H. Jeon, J. Appl. Phys., 91, 5055 (2002) https://doi.org/10.1063/1.1464230
  29. N. J. Ekins-Daukes, J. M. Barnes, K. W. J. Barnham, Solar energy materials & Solar cells, 68, 71-81 (2001) https://doi.org/10.1016/S0927-0248(00)00346-9
  30. J. Y. Leem, M. H. Jeon, J. W. Lee, G. S. Cho, J. Crystal. Growth, 252, 493-498 (2003) https://doi.org/10.1016/S0022-0248(03)00866-2