DOI QR코드

DOI QR Code

Aging Behavior and Effect of Heat Treatment on High Temperature Mechanical Properties in Ti-15V-3AI-3Cr-3Sn

Ti-15V-3Al합금의 시효거동과 열처리에 따른 고온 기계적 특성

  • 이재원 (한양대학교 공과대학 재료공학과) ;
  • 이백희 (한양대학교 공과대학 재료공학과) ;
  • 이규환 (한국과학기술원 미래기술연구부) ;
  • 김영도 (한양대학교 공과대학 재료공학과)
  • Published : 2004.01.01

Abstract

Titanium alloys are the one of promising candidate materials for medium high temperature parts in the aircraft, automobile, petrochemistry and electrochemistry because of their high strength with low density in medium high temperature. In this study, the effects of aging and heat treatments on the mechanical properties of Ti-15-3 alloy in medium high temperature, which was $400^{\circ}C$, were studied. Solid solution treatment was performed at $8000^{\circ}C$ of $\beta$ phase region for 1 h and the alloy was quenched in water. The alloy was aged at $5000^{\circ}C$ of $\alpha$ and $\beta$ two-phase region for 1, 2, 4, 8, ... and 100 h to increase the mechanical property. The $\beta$ single phase was observed at all parts of specimens in Ti-15-3 alloy after ST. As the aging at $500^{\circ}C$, fine precipitates of a phase was generated from matrix of $\beta$ phase and the microstructure was consisted of weaving structure such as Widmanstiitten a phase. The most suitable aging time is 24h in$ 400^{\circ}C$. At this time, strength is 1164 MPa and elongation is about 12%. In room temperature, elongation of Ti-15-3 alloy aged at $500^{\circ}C$ for 16 h is poor (=3%) in spite of high tensile strength (1458 MPa).

Keywords

References

  1. H. W. Rosenberg, J. Met., 35, 30 (1983)
  2. R. R. Boyer, Met. Sci. and Eng., A213, 103 (1996) https://doi.org/10.1016/0921-5093(96)10233-1
  3. G. Welsch, R. Boyer and E. W. Collings, Materials properties handbook - titanium alloys, p. 899, ASM Int. (1994)
  4. M. Yavin and A. Rosen, Scripta Metall., 35, 833 (1986) https://doi.org/10.1016/0036-9748(86)90450-3
  5. M. Okada, ISIJ Int., 31, 834 (1991) https://doi.org/10.2355/isijinternational.31.834
  6. T. Furuhara, T. Maki and T. Makino, J. of Mater. Pro. Tech., 117, 318 (2001) https://doi.org/10.1016/S0924-0136(01)00790-7
  7. T. Makino, R. Chikaizumi, T. Nagaoka, T. Furuhara and T. Makino, Met. Sci. and Eng., A213, 51 (1996) https://doi.org/10.1016/0921-5093(96)10236-7
  8. S. I. Kim, B. H. Choe and M. Hagiwara, J. of the Korean Inst. of Met. & Mater., 35, 880 (1997)
  9. William F. Smith, Structure and properties of engineering alloys, p. 417, New York McGraw-Hill (1981)
  10. S. C. Huang and E. L. Hall, Metall. Trans. A., 22A, 2619 (1991)
  11. S. Ishiyama, S. Hanada and O. Izumi, ISIJ Int., 31, 807 (1991) https://doi.org/10.2355/isijinternational.31.807
  12. B. H. Choe, B. H. Lee and K. S. Choi, S. K. Seo, S. E. Kim, S. J. Kim and Y. T. Lee, J. of the Korean Inst, of Met. & Mater., 39, 388 (2001)
  13. F. George, Metallography principles and practice, p. 252, ASM Inst. (1999)
  14. C. S. Barrett and T. B. Massalski, Structure of metals : crystallographic methods, principles and data, p. 384, New York McGraw-Hill (1966)
  15. Y. Takemoto, M. Hida, A. Sakakibara, J. of Japan Inst. of Met., 57, 261 (1993) https://doi.org/10.2320/jinstmet1952.57.3_261
  16. G. T. Terlinde, T. W. Duerig and J. C. Williams, Metall. Trans. A., 14A, 2101 (1983)
  17. M. Okada, Tetsu-to-Hagane, 76, 614 (1990) https://doi.org/10.2355/tetsutohagane1955.76.4_614