DOI QR코드

DOI QR Code

다꾸치법에 의한 무섬유 세라믹 브레이크 마찰재의 제조변수에 대한 고찰

Investigation of Manufacturing Parameters for Non-fibrous Ceramic Brake Pads using Taguchi Method

  • 여정구 (한양대학교 세라믹공학과) ;
  • 최성철 (한양대학교 세라믹공학과)
  • 발행 : 2004.01.01

초록

In the present study, ceramic brake pads without fiber phases were manufactured by the low temperature heat treatment below$ 700 ^{\circ}C$. The manufacturing parameters of ceramic brake pads and those levels were investigated by the analysis results of signal-to-noise ratios, ANOVA based upon the Taguchi method. The ceramic brake pads prepared in the Mg experiment had a friction coefficient of 0.30~0.55 very close to the target coefficient (0.35~0.45) of commercial brake pads utilized in the automobiles. The frictional properties of ceramic brake pads could be stabilized with the adjustment of amounts of lubricating additives. The optimum preparation conditions as well as batch formulations for the fabrication of non-fibrous ceramic brake pads were finally determined using Taguchi method in this study.

키워드

참고문헌

  1. M. K. Stanford and V. K. Jain, Wear, 251(1-12), 990 (2001) https://doi.org/10.1016/S0043-1648(01)00719-0
  2. B. K. Friley, B. E. McNeese, and J. T. Trainor, SAE Tech. Series, #911951
  3. K. Shibata, A. Gato, S. Yoshida, Y. Azuma, and K. Nakamura, SAE Tech. Series, #930806
  4. M. B. James and J. M. Newton, Powder Technology, 34(1), 29 (1983) https://doi.org/10.1016/0032-5910(83)87025-9
  5. M. Eriksson and S. Jacobson, Tribology International, 33, 817 (2000) https://doi.org/10.1016/S0301-679X(00)00127-4
  6. S. K. Rhee, Wear, 28(2), 277 (1974) https://doi.org/10.1016/0043-1648(74)90169-0
  7. M. Eriksson, F. Bergman, and S. Jacobson, Wear, 232, 163 (1999) https://doi.org/10.1016/S0043-1648(99)00141-6
  8. W. Y. Fowlkes and C. M. Creveling, Engineering Methods for Robust Product Design: Using Taguchi Methods in Technology and Product Development, Prentice Hall, NY, U.S.A. (1995)
  9. H. J. Kim and Y. G. Kweon, J. Kor. Inst. Met. Mater.(in Kor.), 35(3), 374 (1997)
  10. J. S. Tsai, J. Mater. Sci., 30(8), 2019 (1995) https://doi.org/10.1007/BF00353027
  11. W. D. Yang and K. M. Hung, J. Mater. Sci., 37(7), 1337 (2002) https://doi.org/10.1023/A:1014560310260
  12. J. Y. Kim, D. S. Lim, S. R. Lee, E. S. Byun and G. H. Lee, J. Kor. Ceram. Soc.(in Kor.), 32(11), 1315 (1995)
  13. J. C. Sikra, J. E. Krysiak, P.R. Eklund, and R. Ruh, Am. Ceram. Soc. Bull., 53(8), 581 (1974)
  14. T. Jimbo and S. Hironaka, J. Ceram. Soc. Japan, 104(7), 620 (1996) https://doi.org/10.2109/jcersj.104.620
  15. M. Ohgoshi, M. Fujita, and S. Hironaka, J. Ceram. Soc. Japan, 104(7), 659 (1996) https://doi.org/10.2109/jcersj.104.659
  16. M. Bai and Q. Xue, Tribology International, 30(4), 261 (1997) https://doi.org/10.1016/S0301-679X(96)00047-3
  17. H. E. Sliney, Tribology International, 15(5), 303 (1982) https://doi.org/10.1016/0301-679X(82)90089-5
  18. M. Iwasa, Y Toibana, S. Yoshimura and E. Kobayashi, Yogyo-Kyokai-Shi, 93(2), 73 (1985) https://doi.org/10.2109/jcersj1950.93.1074_73
  19. V. M. Malhotra, P. S. Valimbe and M. A. Wright, Fuel, 81, 235 (2002) https://doi.org/10.1016/S0016-2361(01)00126-0
  20. W. D. Kingery, H. K. Bowen and D. R. Uhlmann, Introduction to Ceramics, 2nd ed., Wiley, NY, U.S.A. (1976)
  21. Y. Lu, C. F. Tang and M. A. Wright, J. Appl. Polymer Sci., 84, 2498 (2002) https://doi.org/10.1002/app.10606
  22. K. C. Ludema, Friction, Wear, Lubrication: A Textbook in Tribology, CRC Press, FL, U.S.A. (1996)