Characterization of the Stretch-Activated Channel in the Hamster Oocyte

햄스터난자에서 신전에 의해 활성화되는 통로의 성상

  • Kim, Y.-M. (Department of Physiology, College of Medicine, Chungbuk National University) ;
  • Hong, S.-G. (Department of Physiology, College of Medicine, Gyeongsang National University)
  • 김양미 (충북대학교 의과대학 생리학교실) ;
  • 홍성근 (경상대학교 의과대학 생리학교실)
  • Published : 2004.08.01

Abstract

Stretch-activated channels (SACs) responds to membrane stress with changes in open probability (Po). They play essential roles in regulation of cell volume and differentiation, vascular tone, and in hormonal secretion. SACs highly present in Xenopus oocytes and Ascidian oocytes are suggested to be involved in the regulation of pH and fluid transport to balance the osmotic pressure, but remain unclear in mammanlian oocytes. This study was investigated to find the presence of SACs in hamster oocytes and to examine their electrophysiological properties. To infer a role of SAC in relation to the development of early stage, we followed up to the stage of two-cell zygote with patch clamp techniques. Single channels were elicited by negative pressure (lower than ­15 cm$H_2O$). Interestingly, SACs were dependent on permeable cations such as $Na^+$ or $K^+$. As permeable cation removed from both sides across the membrane, SAC activity completely disappeared. When permeable cations present only in intracellular compartment, outward currents appeared at positive potentials. In contrast to this, inward currents occurred only at the negative voltage when permeable cation absent in cell interior. These result suggests that SAC carry cations through the nonselective cation channel (NSC channel). Taken together, we found that stretch activated channels present in hamster oocyte and the channel may carry cations through NSC channels. This stretch activated-NSC channels may play physiological role(s) in oocyte growth, maturation, fertilization and embryogenesis in fertilized oocytes to two-cell zygotes of hamster.

음압에 의한 세포막 신전으로 열리는 Stretch-activated channel(SAC)은 세포의 부피조적, 세포의 분화, 혈관 긴장도의 조절, 호르몬 분비 조절에서 SAC 존재 유무를 확인하기 위하여 patch clamp기법을 시행하여 SAC의 조절기전과 전기생리학적인 성질을 조사하였다. 음압이 주어지기 전에는 관찰되지 않던 단일통로 전류가 -20 cm$H_2O$이하의 음압이 주어졌을 때 관찰되었다. 음압에 의해 열리는 단일통로 전류는 $Na^+$이나 $K^+$과 같은 일가 양이온이 존재할 때 관찰되었으나 대신 비투과성인 tetramethylamonium이나 meglumine과 같은 양이온으로 교환해 주면 나타나지 않았다. 이는 이 단일 통로 전류가 양이온만을 투과시키는 nonselective cationic channel(NSC)을 통하여 이동하는 stretch-activated NSC(SA-NSC)임을 시사하였다. 이 SA-NSC 전류는 적혈구나 양서류 난자에서 관찰된 SAC의 전류-전압 관계와 유사한 inward rectification 양상을 나타내었으며 PKA에 의하여 통로활성이 증가하였다. 햄스터 난자에서 관찰되는 SA-NSC는 수정 전부터 2-세포 배아기까지 관찰되었으며 통로전류의 크기는 수정란과 1-세포기 배아에서 가장 크게 관찰되었으며 2-세포기 배아에서는 그 크기가 현저하게 감소하였다. 이와 같이 본 연구에서는 햄스터 난자의 발생 초기 단계에서 전기생리학적 기법을 사용하여 처음으로 SA-NSC존재를 직접 확인하였다. 세포 항상성 유지에 필수적인 이 통로의 일반적인 속성으로 미루어 보아, 햄스터 난자의 수정 전후 난자의 활성과 초기 배아 분화 및 발달에 필수적인 역할을 할 것으로 생각된다.}$1.50개였다. 또한 배란된 성숙난자의 채란 율은 각각 70.2, 74.7 및 54.3%로서 41~50시간째에 회수하였을 때가 가장 낮았다. 두당 회수율에 있어서도 8.25${\pm}$1.34, 8.87${\pm}$1.10 및 5.00${\pm}$1.30개로서 회수시간에 따른 유의적인 차이는 없었다. 회수한 난포내 미성숙 난자의 등급에 있어서 회수시간대별 1등급은 각각 24.2, 19.5 및 12.0%였으며, 2등급의 경우는 41~50시간이 4.0%로서 29~34시간과 35~40시간의 14.4% 및 16.2%보다 유의적(P<0.05)으로 낮았다. 난자의 pH 조절과 용적조절과 같은 생리적 환경 조성에 관여할 것으로 추정된다.았으며, 난포내 난자의 회수율은 투여 호르몬 및 반복사용 여부에 따른 차이는 없었다.떤 특정한 질환의 환자가 상대적으로 많을 가능성이 있으므로 국내에서의 소아 신질환의 발병형태를 보다 체계적으로 조사하고 이를 자료화하기 위해서는 개별 기관들의 연구결과만으로는 미흡하다고 생각되며, 이를 위해서는 전국적인 협동조사가 필요하다고 사료된다.9%$, 좌측 $22.2{\pm}3.9%$, 전체 $44.2{\pm}7.8%$보다 유의하게 감소되었다(p<0.01). 4) 양측성 미만성 결손을 보인 급성 신우신염시 상대적 신섭취율은 우측 $48.9{\pm}1.9%$, 좌측 $51.0{\pm}1.9%$로 대조군의 우측 $49.4{\pm}2.6%$, 좌측 $50.2{\pm}2.5%$에 비해 유의한 차이가 없었으나 절대적 신섭취율은 우측 $18.1{\pm}3.9%$,

Keywords

References

  1. Block ML and Moody WJ. 1990. A voltage- dependent chloride current linked to the cell cycle in ascidian embryos. Science, 247 (4946): 1090-1092 https://doi.org/10.1126/science.2309122
  2. Brezden BL and Gardner DR. 1990. Non-voltage- gated calcium channels in snail heart ventricle cells. J. Exp. Biol., 150:187-203
  3. Bubien JK, Kirk KL, Rado TA, and Frizzell RA. 1990. Cell cycle dependence of chloride permeability in normal and cystic fibrosis lymphocytes. Science, 248(4961):1416-1419 https://doi.org/10.1126/science.2162561
  4. Christensen O. 1987. Mediation of cell volume regulation by Ca2+ influx through stretch- activated channels. Nature, 5-11;330 (6143): 66-68 https://doi.org/10.1038/330066a0
  5. Coombs JL, Viliaz M, and Moody WJ. 1992. Changes in voltage-dependent ion currents during meiosis and first mitosis in eggs of an ascidian. Dev. Biol., 153:272-282 https://doi.org/10.1016/0012-1606(92)90112-T
  6. Day ML, Pickering SJ, Johnson MH, and Cook DI. 1993. Cell-cycle control of a large-conductance K+ channel in mouse early embryos. Nature, 365:560-562 https://doi.org/10.1038/365560a0
  7. Falke LC, Edwards KL, Pickard BG, and Misler S. 1988. A stretch-activated anion channel in tobacco protoplasts. FEBS Lett, 237(1-2): 141-144 https://doi.org/10.1016/0014-5793(88)80188-1
  8. Franco A Jr and Lansman JB. 1990. Stretch-sensitive channels in developing muscle cells from a mouse cell line. J. Physiol., 427: 361-380 https://doi.org/10.1113/jphysiol.1990.sp018176
  9. Guharay F and Sachs F. 1984. Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J. Physiol., 352:685-701 https://doi.org/10.1113/jphysiol.1984.sp015317
  10. Guixue Z, Luciano AM, Coenen K, Gandolfi F and Sirard MA. 2001. The influence of cAMP before or during bovine oocyte maturation on embryonic developmental competence. Theriogenology, 55(8):1733-1743 https://doi.org/10.1016/S0093-691X(01)00516-7
  11. Haan JH and Hong SG. 1998. Characteristics of the inward current and its changes following fertilization in hamster eggs. Kor. J. Vet. Res., 38(2):280-289
  12. Hamill OP and McBride DW Jr. 1992. Rapid adaptation of single mechanosensitive channels in Xenopus oocytes. Proc. Natl. Acad. Sci., USA. 89(16):7462-7466 https://doi.org/10.1073/pnas.89.16.7462
  13. Kaufman MH and Surani MA. 1974. The effect of osmolarity on mouse parthenogenesis. J. Embryol. Exp. Morphol., 31(2):513-526
  14. Kaufman MH 1983. Early mammalian development : Parthenogenetic studies. Cambridge University Press
  15. Jungnickel MK, Marrero H, Birnbaumer L, Lemos JR, and Florman HM. 2001. Trp2 regulates entry of $Ca^2^+$ into mouse sperm triggered by egg ZP3. Nat. Cell Biol., 3(5):499-502 https://doi.org/10.1038/35074570
  16. Lansman JB, Hallam TJ, and Rink TJ. 1987. Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers? Nature, 325(6107):811-813 https://doi.org/10.1038/325811a0
  17. Lansman JB. 1988. Endothelial mechanosensors. Going with the flow. Nature, 331(6156):481- 482 https://doi.org/10.1038/331481a0
  18. Martinac B, Buechner M, Delcour AH, Adler J, and Kung C. 1987. Pressure-sensitive ion channel in Escherichia coli. Proc. Natl. Acad. Sci., USA. 84(8):2297-2301 https://doi.org/10.1073/pnas.84.8.2297
  19. Medina I and Bregestovski PD. 1988. Stretch-activated ion channels modulate the resting membrane potential during early embryogenesis. Proc. R. Soc. Lond. B. Biol Sci., 235(1278):95-102 https://doi.org/10.1098/rspb.1988.0064
  20. Medina I and Bregestovski PD. 1991. Sensitivity of stretch-activated K+ channels changes during cell-cleavage cycle and may be regulated by cAMP-dependent protein kinase. Proc. R. Soc. Lond., 245:159-164 https://doi.org/10.1098/rspb.1991.0103
  21. Moody WJ and Bosma MM. 1989. A nonselective cation channel activated by membrane deformation in oocytes of the ascidian Boltenia villosa. J, Memb, Biol., 107(2):179-188 https://doi.org/10.1007/BF01871723
  22. Olesen SP, Clapham DE, and Davies PF. 1988. Haemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature, 331(6152):168-170 https://doi.org/10.1038/331168a0
  23. Sackin H. 1987. Stretch-activated potassium channels in renal proximal tubule. Am. J. Physiol., 253(6 Pt 2):F1253-1262
  24. Sigurdson WJ and Morris CE. 1989. Stretch-activated ion channels in growth cones of snail neurons. J. Neurosci., (8):2801-2808
  25. Wilkinson NC, Gao F, and Hamill OP. 1998. Effects of mechano-gated cation channel blockers on Xenopus oocyte growth and development. J. Memb. Biol., 165(2):161-174 https://doi.org/10.1007/s002329900430
  26. Reifarth FW, Clauss W, and Weber WM. 1999. Stretch-independent activation of the mechanosensitive cation channel in oocytes of Xenopus laevis. Biochim. Biophys. Acta., 1417 (1):63-76 https://doi.org/10.1016/S0005-2736(98)00257-0
  27. Weber WM. 1999a. Endogenous ion channels in oocytes of Xenopus laevis: recent developments. J. Memb. Biol., 170(1):1-12 https://doi.org/10.1007/s002329900532
  28. Weber WM. 1999b. Ion currents of Xenopus laevis oocytes: state of the art. Biochim. Biophys. Acta., 1421(2):213-233 https://doi.org/10.1016/S0005-2736(99)00135-2
  29. Yang XC and Sach F. 1987. Stretch-activated channels in several tissues. Biophysical. J., 51: 252a
  30. Yang XC and Sachs F. 1988. Stretch-activated (SA) ion channels in Xenopus oocytes: permeation and block. Biophysical. J., 53: 412a
  31. Yang XC and Sachs F. 1990. Characterization of stretch-activated ion channels in Xenopus oocytes. J. Physiol., 431:103-122 https://doi.org/10.1113/jphysiol.1990.sp018322
  32. Yang XC and Sachs F 1993. Mechanically sensitive, nonselective cation channels. In Nonselective cation channels(Siemen D. adn Hescheler, J., editors). Birkhauser Verlag. 79-92