Identification of Chloride Channels in Hamster Eggs

햄스터 난자에서 존재하는 Chloride 통로

  • Kim, Y.-M. (Department of Physiology, College of Medicine, Chungbuk National University) ;
  • Kim, J.-S. (Department of Pharmacology, College of Verterinary Medicine, Gyeonsang National University) ;
  • Hong, S.-G. (Department of Physiology, College of Medicine, Gyeonsang National University)
  • 김양미 (충북대학교 의과대학 생리학교실) ;
  • 김종수 (경상대학교 수의과대학 약리학교실) ;
  • 홍성근 (경상대학교 의과대학 생리학교실)
  • Published : 2004.08.01

Abstract

Chloride($Cl^-$) channels play critical roles in cell homeostasis and its specific functions such as volume regulation, differentiation, secretion, and membrane stabilization. The presence of these channels have been reported in all kinds of cells and even in frog oocytes. These essential role of $Cl^-$­ channels in cell homeostasis possibly play any role in egg homeostasis and in the early stage of development, however, there has been no report about the presence of $Cl^-$­ channel in the mammalian oocyte. This study was performed to elucidate the presence of $Cl^-$­ channels in hamster eggs. When allowing only $Cl^-$­ to pass through the channel of the egg membrane by using impermeant cation such as N-methyl-D-glucamine(NMDG), single channel currents were recorded. These channel currents showed typical long-lasted openings interrupted by rapid flickering. Mean open $time({\tau}o)$ was 43${\pm}$10.14 ms(n=9, at 50 mV). The open probability(Po) was decrease with depolarization. The current-voltage relation showed outward rectification. Outward slop conductance(32${\pm}$5.4 pS, n=22) was steeper than the inward slop conductance(10${\pm}$1.3 pS). Under the condition of symmetrical 140 mM NaCl, single channel currents were reversed at 0 mV(n=4). This reversal potential(Erev) was shifted from 0 mV at 140 mM concentration of internal NaCl(140 mM [Na+]i) to ­9.8${\pm}$0.5 mV(n=4) at 70 mM [Na+]i and 11.5${\pm}$1.9 mV at 280 mM [Na+]i(n=4) respectively, strongly suggesting that these are single $Cl^-$­ channel currents. To examine further whether this channel has pharmacological property of the $Cl^-$­ channel, specific Cl­ channel blockers, IAA-94(Indanyloxyacetic acid-94) and DIDS(4, 4'-diisothiocyan ostillben- 2-2'disulfonic acid) were applied. IAA-94 inhibited the channel current in a dose-dependent manner and revealed a rapid and flickering block. From these electrophysiological and pharmacological resluts, we found the novel $Cl^-$­ channel present in the hamster oocyte membrane. The first identification of $Cl^-$­ channel in the hamster oocyte may give a clue for the further study on the function of $Cl^-$­ channel in the fertilization and cell differentiation.

본 연구는 포유류인 $Cl^-$통로의 존재 여부를 확인하기 위하여 수행되었다. $Cl^-$통로는 비흥분성 세포에서 용적변화와 pH 조절, 이온운반계 등에 중요한 역할을 수행하므로 활발한 세포분화가 이루어지는 난자의 생존과 기능에 필수적 $Cl^-$통로 존재 여부를 확인하고자 하였다. 단일통로 전류를 기록하는 patch clamp 기법을 이용하였다. 세포외(pipette) 용액을 140 mM NaCl로 하고 세포내(bath) 용액을 70 mM, 140 mM, 280 mM NaCl로 바꾸어 주었을 때, 역전압($E_{rev}$) 은 $Cl^-$평형전압을 반영하는 -9.8${\pm}$0.5mV, 0mV, 11.5${\pm}$0.2mV로 변화하였다(n=4). 이런 결과는 이론치와 약간의 편차를 보이고 있으므로 이를 보정하기 위항 Goldman-Hodgkin-Katz(GHK) 식을 이용한 결과 $Cl^-$에 대한 $Na^+$의 투과성 ($P_{Na}$/$P_{Cl}$/)은 0.25로 추측할 수 있었다. Inside out patch mode에서 Pipette 용액과 bath 용액에 imperment인 NMDG-Cl로 구성하였을 경우 단일 통로가 기록되었다.(n=22). 막전압이 증가함에 따라 전도도(conductance)가 같이 증가하였으며 전류-전압 관계는 outward rectification을 보였다. 이런 특성을 나타내는 단일통로로 전류는 선택적 $Cl^-$통로 차단제인 IAA-94(indanyloxyacetic acid 94)에 의해 농도 의존적으로 차단되었으며 가역적으로 회복되었다. IAA의 $IC_{50}$은 32.6$\mu\textrm{M}$이었다. DIDS(4,4'-diisothiocyan ostillben-2-2'disulfonic acid)에 의해서는 전류크기가 감소 되는 빠른 억제기전을 나타내는 차단효과를 보였으며 시간경과에 따라 seblevel로 감소되는 subconductance block 이 나타났다. 이상의 결과는 햄스터 난자에서 chloride 통로가 존재하여, 물질이동과 pH 조절기능을 나타내는 외향성 전류-전압관계를 보이는 $Cl^-$ 통로의 성상으로 미루어 볼 때 난자의 pH 조절과 용적조절과 같은 생리적 환경 조성에 관여할 것으로 추정된다.

Keywords

References

  1. Ackerman MJ, Wickman KD and Clapham DE. 1994. Hypotonicity activity a native chloride current in Xenopus oocyte. J. Gen. Physiol., 103:153-179 https://doi.org/10.1085/jgp.103.2.153
  2. Akbarali HI and Giles WR. 1993. $Ca^2^+$ and $Ca^2^+$ -activated Cl- current in rabbit oesophageal smooth muscle. J. Physiol., 460:117-133 https://doi.org/10.1113/jphysiol.1993.sp019462
  3. Alger BE. 1985. GABA and Glycine : Postsynaptic actions. In : Neurotransmitter actions in the vertebrate nervous system. (Rogawski, M. A., and Barker. J. L. editors). Plenum press, 33-69
  4. Arellano RO and Miledi R. 1993. Novel Cl- currents elicited by follicle stimulating hormone and acetylcholine in follicle-enclosed Xenopus oocyte. J. Gen Physiol., 102:833-857 https://doi.org/10.1085/jgp.102.5.833
  5. Arreola J, Melvin JE and Begenisich T. 1995. Volume-activated chloride channels in rat parotid acinar cells. J. Physiol., 484(3):677-687 https://doi.org/10.1113/jphysiol.1995.sp020695
  6. Blatz AL and Magleby KL. 1983. Single voltage- dependent chloride selective-channels of large conductance in cultured rat skeletal muscle. Biophys. J., 43 : 237-241 https://doi.org/10.1016/S0006-3495(83)84344-6
  7. Block ML and Moody WJ. 1990. A voltage- dependent chloride current linked to the cell cycle in ascidian embryos. Science., 247 (4946): 1090-1092 https://doi.org/10.1126/science.2309122
  8. Cala PM. 1990. Principle of cell volume regulation ion flux pathways and the role of anions. In : Chloride channels and carriers in nerve, muscle and glial cells(Alvarea- Leefmans, F. J. and Russell. J. M. editors). Plenum press, 67-83
  9. Choi WY, Kim YM, Haan JH, Huh IO, Park CO, Hong SG, Ryu PD and Kim JS. 1996. Ionic currents elicited by the hypotonic solution in hamster eggs. Kor. J. Vet. Res., 36(2):305-312
  10. Coombs JL, Viliaz M and Moody WJ. 1992. Changes in voltage-dependent ion currents during meiosis and first mitosis in eggs of an ascidian. Dev. Biol., 153:272-282 https://doi.org/10.1016/0012-1606(92)90112-T
  11. Day ML, Pickering SJ, Johnson MH and Cook D I. 1993. Cell-cycle control of a large-conductance K+ channel in mouse early embryos. Nature, 365:560-562 https://doi.org/10.1038/365560a0
  12. Duszyk M, Liu D, Kamosinska B, French AS and Paul Man SF. 1995. Characterization and regulation of a chloride channel from bovine tracheal epithelium. J. Physiol., 489(1):81-93 https://doi.org/10.1113/jphysiol.1995.sp021032
  13. Ehara T and Matsuura H. 1993. Single-channel study of the cyclic AMP-regulated chloride current in guinea-pig ventricular myocytes. J. Physiol., 464:307-320 https://doi.org/10.1113/jphysiol.1993.sp019636
  14. Ehara T and Ishihara K. 1990. Anion channels activated by adrenaline in cardiac myocytes. Nature, 347:284-286 https://doi.org/10.1038/347284a0
  15. Filipovic D and Sackin H. 1992. Stretch and volume-activated channels in isolated proximal tubule cells. Am. J. Physiol., 262:F857-F870
  16. Frizzell RA and Halm DR. 1990. Chloride channels in epithelial cells. Current Topics in Membranes Transport, 37:247-282 https://doi.org/10.1016/S0070-2161(08)60234-8
  17. Gosling M, Smith JW and Poyner DR. 1995. Characterization of a volume-sensitive chloride current in rat osteoblast-like (ROS 17/2.8)cells. J. Physiol., 458(3):671-682
  18. Gray PTA, Bevan S and Ritchie JM. 1984 High conductance anion-selective channels in rat cultured Schwann cells. Proc. R. Soc. London Ser., 221:395-409 https://doi.org/10.1098/rspb.1984.0041
  19. Greenwood IA and Large WA. 1996. Analysis of the time course of calcium-activated chloride 'tail' currents in rabbit portal vein smooth muscle cells. Pflugers Arch., 432:970-979 https://doi.org/10.1007/s004240050224
  20. Hagiwara S and Jaffe LA. 1979. Electrical properties of egg cell membranes. Ann. Rev. Biophys. Bioeng., 8:385-416 https://doi.org/10.1146/annurev.bb.08.060179.002125
  21. Hamill OP, Marty A, Neher E, Sakmann B and Sigworth FJ. 1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pfl$\ddot{u}$gers Arch., 391:85-100 https://doi.org/10.1007/BF00656997
  22. Hanrahan JW and Tabcharani JA. 1990. Inhibition of an outwardly rectifying anion channel by HEPES and related buffers. J. Memb. Biol., 116:65-77 https://doi.org/10.1007/BF01871673
  23. Janssen LJ and Sims SM. 1995. Ca2+- dependent Cl- current in canine tracheal smooth muscle cells. Am. J. Physiol., 269:C163-C169 https://doi.org/10.1152/ajpcell.1995.269.1.C163
  24. Jentsch TJ. 1993. Chloride channels. Current Opinion in Neurobiology, 3:316-321 https://doi.org/10.1016/0959-4388(93)90123-G
  25. Jorissen M, Vereecke J, Carmeliet E, van den Berghe H and Cassiman JJ. 1990. Outward- rectifying chloride channels in cultured adult and fetal human nasal epithelial cells. J. Memb. Biol., 117:123-130 https://doi.org/10.1007/BF01868679
  26. Kaufman MH and Surani MAH. 1974. The osmolarity of mouse parthenogenesis. J. Embryol. Exp Morph., 31:513-526
  27. Kaufman MH. 1983. Early mammalian development: Parthenogenetic studies. Cambridge, Cambridge University Press
  28. Krick W, Disser J, Hazama A, Burckhardt G and Fromter E. 1991. Evidence for a cytosolic inhibitor of epithelial chloride channels. Pflugers Arch., 418:491-499 https://doi.org/10.1007/BF00497777
  29. Kunzelmann K, Tilmann M, Hansen CP and Greger R. 1991. Inhibition of epithelial chloride channels by cytosol. Pflugers Arch., 418:479-490 https://doi.org/10.1007/BF00497776
  30. Kusano K, Miledi R and Stinnakre J. 1982. Cholinergic and catecholaminergic receptors in the Xenopus oocyte membrane. J. Physiol., 328 :143-170 https://doi.org/10.1113/jphysiol.1982.sp014257
  31. Landry DW, Akabas MH, Rehead C, Edelman A, Cragoe EJ Jr and Al-Awqati Q. 1989. Purification and reconstitution of chloride chnnels from kidney and trachea. Science, 244:1469-1472 https://doi.org/10.1126/science.2472007
  32. Landry DW, Reitman M, Cragoe EJ Jr and Al- Awqati Q 1987. Epithelial chloride channel : Development of Inhibitory Ligands. J. Gen. Physiol., 90:779-798 https://doi.org/10.1085/jgp.90.6.779
  33. Lang F, Ritter M, Woll E, Weiss H, Haussinger D, Hoflacher J, Maly K and Grunicke H. 1992. Altered cell volume regulation in ras oncogene expressing NIH fibroblasts. Pflugers. Arch., 420:424-427 https://doi.org/10.1007/BF00374615
  34. Lotan I, Dascal N, Cohen S and Lass Y. 1982. Adenosine-induced slow ionic currents in the Xenopus oocyte. Nature, 298(5):572-574 https://doi.org/10.1038/298572a0
  35. Mayer ML. 1985. A calcium-activated chloride current generates the after-depolarization of rat sensory neurones in culture. J. Physiol., 364: 217-239 https://doi.org/10.1113/jphysiol.1985.sp015740
  36. Medina I and Bregestovski P. 1991. Sensitivity of stretch-activated K+ channels changes during cell-cleavage cycle and may be regulated by cAMP-dependent protein kinase. Proc. R. Soc. Lond., 245:159-164 https://doi.org/10.1098/rspb.1991.0103
  37. Miledi R and Woodward RM. 1989. Membrane currents elicited by prostaglandins, atrial natriuretic factor and oxytocin in follicle- enclosed Xenopus oocytes. J. Physiol., 416:623 -643 https://doi.org/10.1113/jphysiol.1989.sp017781
  38. Miller C and White MM 1984. Dimeric structure of Cl-channel from torpedo electroplax. Proc. Natl. Acad. Sci., USA, 81:2772-2775 https://doi.org/10.1073/pnas.81.9.2772
  39. Pacaud P, Loirand G, Lavie JL, Mironneau C and Mironneau J. 1989. Calcium-activated chloride current in rat vascular smooth muscle cells in short-term primary culture. Pflugers Arch., 413: 629-636 https://doi.org/10.1007/BF00581813
  40. Schwarze W and Kolb HA. 1984. Voltage - dependent kinetics of an anionic channel of large unit conductance in macrophages and myotube membrane. Pflugers Arch., 402: 281- 291 https://doi.org/10.1007/BF00585511
  41. Takahashi T, Neher E and Sakmann B. 1987. Rat brain serotonin receptors in Xenopus oocytes are coupled by intracellular calcium to endogenous channels. Proc. Natl. Acad. Sci. USA. 84:5063-5067 https://doi.org/10.1073/pnas.84.14.5063
  42. Tabcharani JA, Jensen TJ, Riordan JR and Hanrahan JW. 1989. Bicarbonate permeability of the outwardly rectifying anion channel. J. Memb. Biol., 112:109-122 https://doi.org/10.1007/BF01871272
  43. Tilmann M, Kunzelmann K, Frobe U, Cabantchik I, Lang HJ, Englert HC and Greger R. 1991. Different types of blockers of the intermediate- conductance outwardly rectifying chloride channel in epithelia. Pflugers Arch. 418:556- 563 https://doi.org/10.1007/BF00370571
  44. Thomas RC. 1984. Experimental displacement of intracellular pH and the mechanism of its subsequent recovery. J. Physiol., 354:3-22 https://doi.org/10.1113/jphysiol.1984.sp015397
  45. Villaz M, Cinniger JC and Moody WJ. 1995. A voltage-gated chloride channel in ascidian embryos modulated by both the cell cycle clock and cell volume. J. Physiol., 488(3):689 -699 https://doi.org/10.1113/jphysiol.1995.sp021000
  46. Webb DJ and Nuccitelli R. 1985. Fertilization potential and electrical properties of the Xenopus laevis egg. Dev. Bio., 207(2):395-406
  47. Weingar BD, Haws CM and Lansman JB. 1996. Subconductance block of single mechanosensitive ion channels in skeletal muscle fibers by aminoglycoside antibiotics. J. Gen. Physiol., 107(3):433-443 https://doi.org/10.1085/jgp.107.3.433
  48. Weiss DS and Magleby KL. 1990. Voltage dependence and stability of the gating kinetics of the fast chloride channel from rat skeletal muscle. J. Physiol., 426:145-176 https://doi.org/10.1113/jphysiol.1990.sp018131
  49. Zhao Y, Chauvet PJ, Alper SL and Baltz JM. 1995. Expression and function of bicarbonate/chloride exchanges in the preimplantation mouse embryo. J. Bio. Chem., 270 (41):24428-24434 https://doi.org/10.1074/jbc.270.41.24428