광선추적과 스펙트럼에 대한 교사와 중학생의 개념 유형 분석

An Analysis of the Types of Teacher and Student's Concept on Ray-Tracing and Spectrum in the Middle School

  • 발행 : 2004.12.30

초록

본 연구의 목적은 중학교 교사와 학생들을 대상으로 광선추적과 스펙트럼에 대한 교사와 학생의 개념 유형을 비교하는 것이다. 본 연구에서는 7학년 '빛' 단원에서 가장 중요하다고 생각되는 핵심개념은 광선추적과 스펙트럼에 의해 파악할 수 있다고 전제하고, 이에 대한 교사와 학생의 개념 유형을 조사하였다. 연구 대상은 서울 경기지역 과학교사 10명과 이들에게 배운 학생 328명이다. 모든 검사문항은 광선추적법과 스펙트럼 방법을 적용하는 문항으로 구성하였다. 연구결과 광선추적과 스펙트럼에 대한 교사와 학생들의 개념유형에는 차이가 있었다. 또한 대부분의 교사와 학생들은 상이 생기는 근본원리에 대하여 정확하게 알지 못하였다. 광선추적법을 알지 못하여 반사와 굴절에 의한 상을 찾을 때, 물체에서 나온 두 개 이상의 광선을 그려서 상을 찾는 경우는 거의 없었고, 하나의 광선으로 임의의 위치에서 상을 찾거나 평소 암기하고 있던 상의 위치를 표시하였다. 그리고 색에 대하여는 교사와 학생들은 개념을 이해하지 못하고, 교사들은 학생들에게 원리에 대한 설명 없이 현상을 제시하였다. 즉 교사와 학생들은 색에 대해서 단순 암기하고 있었다.

The purpose of this study is to understand the types of teacher and student's concept on ray-tracing and spectrum in middle school. This study suggest key-concepts that is most important to "Light" unit in the seven grades: the ray-tracing and the spectrum. We examined the types of teacher and student's concept. We selected 10 teacher and 328 students who had learned by 10 teachers in Seoul and Gyeonggi. The problems were composed with the question item regarding all ray-tracing or the spectrum. From the analysis, it was found that the types of teacher and student's concept on ray-tracing and spectrum is different. The most of teacher and student didn't understand the basic principle of image formation. In case of context about formation of image by reflection and refraction, because they don't know ray-tracing, they do not try to find the position of the image by drawing two rays. Most of them used one ray comes from the one position of the object and indicated the position of image by memorized position. Also almost there was not a case which uses a ray tracing accurately. In the case of understanding color, they didn't understand the concept of color(or spectrum) and teachers represented to students the color phenomena without explanation of principles. In the result teachers and students would learn color science by rote.

키워드

참고문헌

  1. 고광섭(1997). 빛 개념에 대한 초등학교 교사와 학생의 수업 전후의 개념조사, 한국교원대학교 석사학위논문
  2. 김한호, 권재술, 김범기, 정진우, 최병순(1992). 빛에 대한 국민학교 학생들의 개념조사, 한국과학교육학회지, 12(2), 43-53
  3. 김효남(1990). 국민학교 아동의 과학개념에 대한 실태조사 및 교정을 위한 방법 연구, 한국과학교육학회지, 10(2), 11-24
  4. 박승재, 조희형(1995). 학습론과 과학교육, 교육과학사: 서울
  5. 오원근, 김재우(2002). 시각 및 빛의 성질에 대한 중학생의 개념, 새물리, 45(3), 163-170
  6. 이건호(1999). 빛에 대한 초등학교 교사의 개념, 한국교원대학교 석사학위논문
  7. 이성묵 등(2003). 7학년 '빛' 단원 탐구수업지도자료 개발(I) : 기본구성요소를 중심으로, 과학교육연구논총, 28(1), 67-96
  8. 장병기(1994). 그림자 현상에 대한 학생의 생각과 제시된 증거 유형에 따른 추론방식, 서울대학교 박사학위논문
  9. 정완호(1993), 한국 고등학생의 생물 오개념에 관한 연구, 서울대학교 박사학위논문
  10. Andersson, B., Kaerrqvist, C. (1983). How Swedish pupils, aged 12-15 years, understand light and its properties, European Journal of Science Education, 5(4), 387-402 https://doi.org/10.1080/0140528830050403
  11. Anderson, B. (1990). Pupils' conceptions of matter and its transformations. Studies in Science Education, 2, 155-171
  12. Ausubel, David P. (1968). Educational Psychology, A Cognitive View. New York: Holt, Rinehart and Wmston, Inc
  13. Barrass, R. (1984), Some misconceptions and misunderstandings perpetuated by teachers and textbooks of biology. Journal of Biological Education, 18, 201-206 https://doi.org/10.1080/00219266.1984.9654636
  14. Bendall, S., Goldberg, F. and Gaili, I. (1993). Prospective Elementary Teachers' Prior Knowledge about Light. Journal of Research in Science Teaching, 30(9), 1169-1187 https://doi.org/10.1002/tea.3660300912
  15. Bouwens, R. E. A. (1987). Misconceptions among pupils regarding geometrical optics. Proceedings of the 2. Int. Seminar 'Misconception and Educational Strategies in Science and Mathematics, Vol. III. J. Novak. Ithaca, Cornell University: 23-37
  16. Champagne, A. B. Klopfer, L. E., & Anderson, J.(1980). Factor influencing the learning of classical mechanics. American journal of physics, 48, 1074-1079 https://doi.org/10.1119/1.12290
  17. Cho, H, H, Kahle, J. B & Nordland, F. H. (1985). An investigation of high school biology textbooks as sources of misconceptions and Difficulties in genetics and some suggestions for teaching genetics. Science education, 69(5), 707-719 https://doi.org/10.1002/sce.3730690512
  18. Duit, R (1981). Understanding energy as a conserved quantity- remarks on the article by sexl, R.U, European Journal of Science Education, 3, 291-301 https://doi.org/10.1080/0140528810030306
  19. Feher, E., Rice, K. (1988). Shadows and anti-images: Children's conceptions of light and vision. II.Science Education, 72(5), 637-649 https://doi.org/10.1002/sce.3730720509
  20. Feher, E., Meyer, K. R. (1992). Children's conceptions of color. Journal of Research in Science Teaching, 29(5), 505-520 https://doi.org/10.1002/tea.3660290506
  21. Gilbert, J, H. Osborne, R, J & Fensham P. J. (1982), Children's science and it's consequences for teaching. Science Education, 66(4), 623-633 https://doi.org/10.1002/sce.3730660412
  22. Goldberg, F. M., McDermott, L. C. (1986). Student difficulties in understanding image formation by a plane mirror. The Physics Teacher, 24(8), 472-480 https://doi.org/10.1119/1.2342096
  23. Galili, I., Bendall, S. and Goldberg, F. (1993). The Effects of Prior Knowledge and Instruction on Understanding Image Formation. Journal of Research in Science Teaching, 30(3), 271-301 https://doi.org/10.1002/tea.3660300305
  24. Galili, I. (1996). Student's conceptual change in geometrical optics, International Journal of Science Education, 18(7), 847-868 https://doi.org/10.1080/0950069960180709
  25. Galili, I. & Goldberg, F. (1996). Using a linear approximation for single-surface refraction to explain some virtual image phenomena, Am. J. Phys.; 64(3), 256-264 https://doi.org/10.1119/1.18213
  26. Galili, I. & Hazan, A. (2000). Learners' knowledge in optics: Interpretations, structure and analysis. International Journal of Science Education, 22(1), 57-88 https://doi.org/10.1080/095006900290000
  27. Guesne, E. (1985). Light. Children's ideas in science. R. Driver, Guesne, E., Tiberghien, A. Milton Keynes, Open University Press, 10-33
  28. Ginns, I. S., Watters, J. J. (1995). An analysis of scientific understandings of preservice elementary teacher education students. Journal of Research in Science Teaching, 32(2), 205-222 https://doi.org/10.1002/tea.3660320209
  29. Helm. H., (1980). Misconceptions in physics amongst South Africa students, Physics Education, 15, 92-105 https://doi.org/10.1088/0031-9120/15/2/308
  30. Hewson, M., Hamlyn, D. (1984), The influence of intellectual environment on conceptions of heat. European Journal of science Education, 6, 245-262 https://doi.org/10.1080/0140528840060306
  31. Jung, W. (1981). Conceptual frameworks in elementary optics. Proceedings of the international workshop on 'Problems Concerning Students' Represen-tation of Physics and Chemistry Knowledge'. W. Jung, Pfundt, H. ,Rhoeneck, C. von. Ludwigs-burg, Paedagogische Hochschule: 441-448
  32. McDermott, L. C. (1996), Physics By Inquiry, Wiley.
  33. Nussbaum, J. (1981). Towards the diagnosis by student teachers of pupils, misconceptions: An Exercise with student teachers. European Journal of Science Education, 3, 159-169 https://doi.org/10.1080/0140528810030206
  34. Pine, A. L.,& West, L. H. T. (1986), Conceptual Understanding and Science Learning: An Interpretation of Research within a Sources-ofKnowledge Framework, Science Education, 70(5). 583-604 https://doi.org/10.1002/sce.3730700510
  35. Ramada, J., Driver, R. (1989), Aspects of secondary students ideas about light, Children' s Learning in science Project : full report, University of Lead
  36. Solomon, J. (1984), Prompts, cues and discrimination: the utilization of two separate knowledge systems. European journal of Science Education, 6, 63-82
  37. Stead, B. F., Osborne, R. J. (1980). Exploring science students concepts of light. Australian Science Teachers Journal, 26(3), 84-90