On the Temporal Variability of Geomagnetic Field and Transfer Function at Icheon Observatory

이천관측소에서 측정된 지자기장 및 지자기 전달함수의 시간적 변동성

  • Lee, Duk-Kee (Marine Meteorology & Earthquake Res. Lab., Meteorological Research Institute) ;
  • Kwon, Byung-Doo (Department of Earth Science Education, Seoul National University) ;
  • Youn, Yong-Hoon (Marine Meteorology & Earthquake Res. Lab., Meteorological Research Institute) ;
  • Yang, Jun-Mo (Marine Meteorology & Earthquake Res. Lab., Meteorological Research Institute)
  • 이덕기 (기상연구소 해양기상지진연구실) ;
  • 권병두 (서울대학교 지구과학교육과) ;
  • 윤용훈 (기상연구소 해양기상지진연구실) ;
  • 양준모 (기상연구소 해양기상지진연구실)
  • Published : 2004.10.30

Abstract

Using three-components geomagnetic data from a permanent geomagnetic observatory in Icheon, we have computed the power spectrum of each geomagnetic component, amplitude, phase and estimation error of transfer function for each day in the 6 months period July 2002${\sim}$December 2002. The temporal variation of power spectrum have random appearances with repeating relative strong and weak magnitude, which is considered as solar activities. However, there is no clear long-term trend. In the case of amplitude, phase and error of transfer function, even though there are some random patterns over the periods of 1000 s and under 100 s, they seem to be comparatively stable without manifest temporal changes. Futhermore, we have estimated electrical field by assuming P$_{1}\;^{0}$ spherical harmonics and then calculated the approximated apparent resistivity for each day. As a result, the variations of resistivity depend on the temporal magnitude of spectral power in horizontal magnetic fields rather than hydrological changes in near surface.

경기도 이천에서 2002년 7월부터 12까지 총 6개월 동안 측정된 지자기 3성분 자료를 이용하여 일별 각 성분의 스펙트럼, 지자기 전달함수의 크기, 위상, 오차 등을 계산하였다. 지자기 스펙트럼은 관측기간 동안 태양활동에 의한 무작위적 강약이 반복되는 형태를 보여주었고, 유의미한 시간적 변동은 존대하지 않았다. 지자기 전달함수의 크기, 위상, 오차의 경우, 주기 100초 이하와 주기 1000초 이상에서 부분적으로 무작위적인 경향을 확인할 수 있었으나, 시간에 따른 증감추세 없이 대체로 안정적인 값을 보였다. 이와 더불어, 전기장의 P$_{1}\;^{0}$ 소스(zonal harmonics) 가정을 통하여 시간에 따른 근사적인 겉보기 전기비저항의 변동을 조사하였는데, 근사된 전기비저항의 변화는 지각의 자체적인 물성 변화보다는 수평 자기장 성분의 시간적 강약에 지배적임을 확인할 수 있었다.

Keywords

References

  1. 양준모, 오석훈, 이덕기, 윤용훈, 2002, 지자기 전달함수의 로버스트 추정, 대한지구물리학회지, 5 (2), 131-142
  2. 이춘기, 이희순, 권병두, 오석훈, 이덕기, 2003, 단층대의 전기전도도 변동에 의한 UHF 전자기장 교란, 한국물리탐사학회지, 6 (2), 87-94
  3. Chave, A.D., Thomson, D.J., and Ander, M., 1987, On the robust estimation of power spectra, coherence and transfer functions, Journal of Geophysical Research, 92, 633-648 https://doi.org/10.1029/JB092iB01p00633
  4. Chave, A.D. and Thomson, D.J., 1989, Some comments on magnetotelluric response function estimation, Journal of Geophysical Research, 99, 4669-4682 https://doi.org/10.1029/93JB03368
  5. Egbert, G.D. and Booker, J.R., 1986, Robust estimation of geomagnetic transfer functions, Geophysical Journal of Royal Astronomical Society, 87, 173-194 https://doi.org/10.1111/j.1365-246X.1986.tb04552.x
  6. Egbert, G.D., Eisel, M., Boyd, O.S., and Morrison, H.F., 2000, Pc3s: source effects in mid-latitude geomagnetic transfer functions, Geophysical Research Letters, 124, 25-28
  7. Egbert, G.D., 2002, On the generation of ULF magnetic variations by conductivity fluctuations in a fault zone, Pure and Applied Geophysics, 159, 1205-1228 https://doi.org/10.1007/s00024-002-8678-y
  8. Eisel, M. and Egbert, G.D., 2001, On the stability of magnetotelluric transfer function estimates and the reliability of their variances, Geophysical Journal International, 144, 65-82 https://doi.org/10.1046/j.1365-246x.2001.00292.x
  9. Fraser-Smith, A.C., Bernardi, A., McGill, P.R., Ladd, M.E., Helliwell, R.A., and Villard, Jr. O.G., 1990, Low-frequecny magnetic field measurements near the epicenter of the ML 7.1 Loma Prieta earthquake, Geophysical. Research Letters, 17, 12951-12958
  10. Huber, P.J., 1981, Robust Statistics, Wiley, New York, 173 p
  11. Jones, A.G., Chave, A.D., Egbert, G.D., Auld, D. and Bahr, K., 1989, A comparison of techniques for magnetotelluric response function estimation, Journal of Geophysical Research, 94, 14201-14213 https://doi.org/10.1029/JB094iB10p14201
  12. Nagao, T., Uyeshima, M. and Uyeda, S., 1996, An independent check of VAN's criteria for signal recognition, Geophysical Research Letters, 23, 1441-1444 https://doi.org/10.1029/96GL00146
  13. Neal, S.L., Mackie, R.L., Larsen, J.C., and Schultz, A., 2000, Variations in the electrical conductivity of the upper mantle beneath North America and the Pacific Ocean, Journal of Geophysical Research, 105, 8229-8242 https://doi.org/10.1029/1999JB900447
  14. Park, S.K., Johnston, M.J.S., Madden, T.R., Morgan, F.D., and Morrison, H.F., 1993, Electromagnetic precursors to earthquake in the ULF band: a review of observations and mechanism, Review of Geophysics, 31, 117-132 https://doi.org/10.1029/93RG00820
  15. Schultz, A. and Larsen J.C., 1987, On the electrical conductivity of the mid-mantle: 1. Calculation of equivalent scalar magnetotelluric response functions, Geophysical Journal of Royal Astronomical Society, 88, 733-761 https://doi.org/10.1111/j.1365-246X.1987.tb01654.x
  16. Thomson, D.J., 1982, Spectrum estimation and harmonic analysis, Proc. IEEE, 70, 1055-1095 https://doi.org/10.1109/PROC.1982.12433
  17. Varotsos, P., Alexopoulos, K., Lazaridou, M., and Nagao, T., 1993, Earthquake predictions issued in Greece by seismic electric signals since February 6, 1990, Tectonophysics, 224, 269-288 https://doi.org/10.1016/0040-1951(93)90080-4
  18. Vozzof, K., 1972, The magnetotelluric method in the exploration of sedimentary basin, Geophysics, 37, 98-141 https://doi.org/10.1190/1.1440255
  19. Vozzof, K., 1986, Magnetotelluric Methods, Soc. Expl. Geophys. Reprint Ser. No 5, Society of Exploration Geophysics, Tulsa, OK, 682 p