DOI QR코드

DOI QR Code

Molecular Dynamics Simulations of Nanomemory Element Based on Boron Nitride Nanotube-to-peapod Transition

  • Hwang Ho Jung (Nano Electronics and Future Technology Laboratory, Department of Electronic Engineering) ;
  • Kang Jeong Won (Nano Electronics and Future Technology Laboratory, Department of Electronic Engineering) ;
  • Byun Ki Ryang (Nano Electronics and Future Technology Laboratory, Department of Electronic Engineering)
  • Published : 2004.12.01

Abstract

We investigated a nonvolatile nanomemory element based on boron nitride nanopeapods using molecular dynamics simulations. The studied system was composed of two boron-nitride nanotubes filled Cu electrodes and fully ionized endo-fullerenes. The two boron-nitride nanotubes were placed face to face and the endo-fullerenes came and went between the two boron-nitride nanotubes under alternatively applied force fields. Since the endo-fullerenes encapsulated in the boron-nitride nanotubes hardly escape from the boron-nitride nanotubes, the studied system can be considered to be a nonvolatile memory device. The minimum potential energies of the memory element were found near the fullerenes attached copper electrodes and the activation energy barrier was $3{\cdot}579 eV$. Several switching processes were investigated for external force fields using molecular dynamics simulations. The bit flips were achieved from the external force field of above $3.579 eV/{\AA}$.

Keywords

References

  1. S. Iijima, 'Helical microtubules of graphitic carbon', Nature, Vol. 354, No. 6348, p. 56, 1991 https://doi.org/10.1038/354056a0
  2. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, 'Science of Fullerenes and Carbon Nanotubes', Academic Press, 1996
  3. J. Zhao, A. Buldum, J. Han, and J. P. Lu, 'Gas molecule adsorption in carbon nanotubes and nanotube bundles', Nanotechnology, Vol. 13, No. 2, p. 195, 2002 https://doi.org/10.1088/0957-4484/13/2/312
  4. R. E. Barajas-Barraza and R. A. Guirado-Lopez, 'Clustering of H$_2$ molecules encapsulated in fullerene structures', Phys. Rev. B, Vol. 66, No. 15, p. 155426, 2002 https://doi.org/10.1103/PhysRevB.66.155426
  5. B. W. Smith, M. Monthioux, and D. E. Luzzi, 'Encapsulated C$_60$ in carbon nanotubes', Nature, Vol. 396, No. 6709, p. 323, 1998
  6. B. Burteaux, A. Claye, B. W. Smith, M. Monthioux, D. E. Luzzi, and J. E. Fischer, 'Abundance of encapsulated C$_60$ in single-wall carbon nanotubes', Chem. Phys. Lett., Vol. 310, No. 1-2, p. 21, 1999 https://doi.org/10.1016/S0009-2614(99)00720-4
  7. B. W. Smith, M. Monthioux, and D. E. Luzzi, 'Carbon nanotube encapsulated fullerenes: a unique class of hybrid materials', Chern. Phys. Lett., Vol. 315, No. 1-2, p. 31, 1999 https://doi.org/10.1016/S0009-2614(99)00896-9
  8. B. W. Smith and D. E. Luzzi, 'Formation mechanism of fullerene peapods and coaxial tubes: a path to large scale synthesis', Chem. Phys. Lett., Vol. 321, No. 1-2, p. 169, 2000 https://doi.org/10.1016/S0009-2614(00)00307-9
  9. K. Hirahara, K. Suenaga, S. Bandow, H. Kato, T. Okazaki, H. Shinohara, and S. Iijima, 'Onedimensional metallofullerene crystal generated inside single-walled carbon nanotubes', Phys. Rev. Lett., Vol. 85, No. 25, p. 5384, 2000 https://doi.org/10.1103/PhysRevLett.85.5384
  10. J. Sloan, R. E. Dunin-Borkowski, J. L. Hutchison, K. S. Coleman, V. C. Williams, J. B. Claridge, A. P. E. Yorka, C. Xu, S. R. Bailey, G. Brown, S. Friedrichs, and M. K. H. Green, 'The size distribution, imaging and obstructing properties of C$_60$ and higher fullerenes formed within arc-grown single walled carbon nanotubes', Chem. Phys. Lett., Vol. 316, No. 3-4, p. 191, 2000 https://doi.org/10.1016/S0009-2614(99)01250-6
  11. Y. K. Kwon, D. Tomanek, and S. Iijima, ''Bucky shuttle' memory device: Synthetic approach and molecular dynamics simulations', Phys. Rev. Lett., Vol. 82, No. 7, p. 1470, 1999 https://doi.org/10.1103/PhysRevLett.82.1470
  12. R. F. Service, 'Nanotube 'Peapods' show electrifying promise', Science, Vol. 292, No. 5514, p. 45, 2001 https://doi.org/10.1126/science.292.5514.45
  13. W. Mickelson, S. Aloni, W-Q Han, J. Cumings, and A. Zettl, 'Packing C$_60$ in boron nitride nanotubes', Science, Vol. 300, No. 5618, p. 467, 2003 https://doi.org/10.1126/science.1082346
  14. D. Goldberg, F. -F. Xu and Y. Bando, 'Filling boron nitride nanotubes with metals', Appl. Phys. A., Vol. 76, No. 4, p. 479, 2003 https://doi.org/10.1007/s00339-002-2041-0
  15. S. Okada, S. Saito, and A. Oshiyam, 'Semiconducting form of the first-row elements: C$_60$ chain encapsulated in BN nanotubes', Phys. Rev. B., vol. 64, No. 20, p. 201303, 2003 https://doi.org/10.1103/PhysRevB.64.201303
  16. L. A. Girifalco and M. Hodak, 'Van der waals binding energies in graphitic structures', Phys. Rev. B., Vol. 65, No. 12, p. 125404, 2002
  17. B. I. Yakobson and R. E. Smalley, 'Fullerene nanotubes: C$_1,000,000$ and beyond', Am. Sci., Vol. 85, p. 324, 1997
  18. X. Blase, A. Rubio, S. G. Louie, and M. L. Cohen, 'Stability and band gap constancy of boron-nitride nanotubes', Europhys. Lett., Vol. 28, No. 5, p. 335, 1994 https://doi.org/10.1209/0295-5075/28/5/007
  19. J. Cioslowski and E. D. Fleischmann, 'Endohedral complexes: Atoms and ions inside the C$_60$ cage', J. Chem. Phys., Vol. 94, No. 5, p. 3730, 1991 https://doi.org/10.1063/1.459744
  20. A. Groisman, M. Enzelberger, and S. R. Quake, 'Microfluidic memory and control devices', Science, Vol. 300, No. 5621, p. 955, 2003 https://doi.org/10.1126/science.1083694
  21. K. Albe and W. Moller, 'Modelling of boron nitride: Atomic scale simulations on thin film growth', Comp. Mater. Sci., Vol. 10, No. 1-4, p. 111, 1998 https://doi.org/10.1016/S0927-0256(97)00172-9
  22. M. Hodak and L. A. Girifalco, 'Ordered phases of fullerene molecules formed inside carbon nanotubes', Phys. Rev. B., Vol. 67, No. 7, p. 075419, 2003 https://doi.org/10.1103/PhysRevB.67.075419
  23. S. Dorfman, K. C. Mundim, D. Fuks, A. Berner, D. E. Ellis, and J. V. Humbeeck, 'Atomistic study of interaction zone at copper-carbon interfaces', Mat. Sci. Eng. c., Vol. 15, No. 1-2, p. 191, 2001 https://doi.org/10.1016/S0928-4931(01)00308-3
  24. W. Y. Choi, J. W. Kang, and H. J. Hwang, 'Structures of ultrathin copper nanowires encapsulated in carbon nanotubes', Phys. Rev. B., Vol. 68, No. 19, p. 193405, 2003 https://doi.org/10.1103/PhysRevB.68.193405
  25. J. Tersoff, 'Empirical interatomic potential for silicon with improved elastic properties', Phys. Rev. B., Vol. 38, No. 14, p. 9902, 1988 https://doi.org/10.1103/PhysRevB.38.9902