DOI QR코드

DOI QR Code

수소 환원기체와 (hfac)Cu(3,3-dimethyl-1-butene) 증착원을 이용한 Pulsed MOCVD로 Cu seed layer 증착 특성에 미치는 영향에 관한 연구

Pulsed MOCVD of Cu Seed Layer Using a (hfac)Cu(3,3-dimethyl-1-butene) Source and H2 Reactant

  • 박재범 (국민대학교 신소재공학부) ;
  • 이진형 (국민대학교 신소재공학부) ;
  • 이재갑 (국민대학교 신소재공학부)
  • Park Jaebum (School of Advanced Materials Engineering, Kookmin University) ;
  • Lee Jinhyung (School of Advanced Materials Engineering, Kookmin University) ;
  • Lee Jaegab (School of Advanced Materials Engineering, Kookmin University)
  • 발행 : 2004.09.01

초록

Pulsed metalorganic chemical vapor deposition (MOCVD) of conformal copper seed layers, for the electrodeposition Cu films, has been achieved by an alternating supply of a Cu(I) source and $H_2$ reactant at the deposition temperatures from 50 to $100^{\circ}C$. The Cu thickness increased proportionally to the number of cycles, and the growth rate was in the range from 3.5 to $8.2{\AA}/cycle$, showing the ability to control the nano-scale thickness. As-deposited films show highly smooth surfaces even for films thicker than 100 nm. In addition about a $90\%$ step coverage was obtained inside trenches, with an aspect ratio greater than 30:1. $H_2$, introduced as a reactant gas, can play an active role in achieving highly conformal coating, with increased grain sizes.

키워드

참고문헌

  1. D. Edelstein, et al, 1997 IEEE Int. Electron Devices Meet. Digest, 773 (1997) https://doi.org/10.1109/IEDM.1997.650496
  2. N. Awaya and Y. Arita, J. Elctron. Mater., 21, 959 (1992) https://doi.org/10.1007/BF02684203
  3. A. Jain, T. Kodas, R. Jairath and M. J. Hampden-Smith, J. Vac. Sci. Technol. B 11, 2107 (1993) https://doi.org/10.1116/1.586550
  4. J. Lin and M. Chen, Jpn. J. Appl. Phys., Part 1 38, 4863 (1999) https://doi.org/10.1143/JJAP.38.4863
  5. S. P. Murarka and S. Hymes, Solid State Mater. Sci., 20, 87 (1995) https://doi.org/10.1080/10408439508243732
  6. Y. J. Park, V. K. Andleigh and C. V. Thompson, J. Appl. Phys., 85, 3546 (1999) https://doi.org/10.1063/1.369714
  7. C. Whitman, M. M. Moslehi, A. Paranjpe, L. Velo and T. Omstead, J. Vac. Sci. Technol., A17, 1893 (1999) https://doi.org/10.1116/1.581700
  8. V. M. Dubin, et al, Proc. of the 1998 Advanced Metallization Conference for ULSI Applications, 405 1998
  9. P. C. Andricacos, C. Uzoh, J. Dukovic, J. Horkans and H. Deligianni, IBM J. Res. Dev., 42, 567 (1998) https://doi.org/10.1147/rd.425.0567
  10. A. F. Burnett and J. M. Chech, J. Vac. Sci. Technol., A11, 2970 (1993) https://doi.org/10.1116/1.578677
  11. W. H. Lee, Y. K. Ko, I. J. Byun, B. S. Seo, J. G. Lee, P. J. Reucroft, J. U. Lee and J. Y. Lee, J. Vac. Sci. Technol., A. 19(6), 2974 (2001) https://doi.org/10.1116/1.1405511
  12. C-K. Hu, L. Gignac, S. G. Malhotra and R. Rosenberg, Appl. Phys. Lett., 78, 904 (2001) https://doi.org/10.1063/1.1347400
  13. M. Juppo, M. Ritala and M. Leskela, J. Vac. Sci. Technol. A15 2330 (1997) https://doi.org/10.1116/1.580743
  14. P. Martensson and J. O. Carlsson, Chem. Vap. Deposition, 3, 45 (1997) https://doi.org/10.1002/cvde.19970030107
  15. P. Martensson and J. O. Carlsson, J. Electrochem. Soc., 145, 2926 (1998) https://doi.org/10.1149/1.1838738
  16. M. Juppo, M. Vehkamaki, M. Ritala and M. Leskela, J. Vac. Sci. Technol. A16 2845 (1998) https://doi.org/10.1116/1.581430
  17. R. Solanki and B. Pathangey, Elctrochem. Solid-State Lett., 3, 479 (2000) https://doi.org/10.1149/1.1391185
  18. B. S. Lim, A. Rahtu and R. G. Gordon, Nature Materials, 2, 749 (2003) https://doi.org/10.1038/nmat1000
  19. K. Kim and K. Yong, Electrochem. Solid-State Lett., 6, 106 (2003) https://doi.org/10.1149/1.1587071
  20. W. H. Lee, B. S. Seo, I. J. Byun, Y. G. Ko, J. Y. Kim, J. G. Lee and E. G. Lee, J. Korea Phys. Soc., 107, (2002)
  21. S. L. Cohen, M. Liehr and S. Kasi, Appl. Phys. Lett., 60, 1585 (1992) https://doi.org/10.1063/1.107259
  22. A. L. Cabrera, J. Vac. Sci. Technol., A8, 3229 (1990) https://doi.org/10.1116/1.576568