DOI QR코드

DOI QR Code

Corrosion Behaviour of Fe-XAl-0.3Y Alloys at High Temperature Sulfidation Environment(Ps2=10-3Pa)

Fe-XAl-0.3Y 합금의 고온 황화환경(Ps2=10-3Pa)에서의 부식거동

  • Lee Byung Woo (Division of Materials Science and Engineering, Pukyong National Univ.) ;
  • Park Hwa Soon (Division of Materials Science and Engineering, Pukyong National Univ.)
  • Published : 2004.08.01

Abstract

The sulfidation behaviour of Fe-XAl-0.3Y(X=5, 10, 14, 25 $wt.\%$) alloys was investigated at 1123 K in $H_2/H_{2}S$ gas atmosphere for $1\sim24$ hrs using SEM/EDX, XRD and EPMA. The weight changes of Fe-XAl-0.3Y alloys followed the parabolic rate law, Sulfidation rates of iron aluminide alloys with high Al content were one-twentieth lower than that of 5Al alloys. This is due to the formation of protective $Al_{2}O_3$ oxides on the surface of 10Al, 14Al and 25Al alloys. By calculating partial pressure of impurity oxygen contained $H_2/H_{2}S$ gas, the $Al_{2}O_3$ oxides formation could be explained using Fe-Al-S-O thermodynamic stability diagram. The sulfidation product scales of the 5Al alloy showed that thick iron sulfide scale(FeS) containing porosities formed during early stages of sulfidation. With continued sulfidation, aluminum sulfide was formed at the alloy/scale interface.

Keywords

References

  1. M. M. Stack, F. H. Stott and G. C. Wood, Mater. Sci. Technol., 10, 177 (1992)
  2. K. Natesan, Mater. High Temp., 14(2), 137 (1997) https://doi.org/10.1080/09603409.1997.11689538
  3. B. W. Lee, H. I. Park, J. S. Kim, K. H. Lee and H. S. Kim, Kor. J. Mat. Res., 7(10), 898 (1997)
  4. R. L. Fleischer, J. Mater. Sci., 22, 2281 (1987) https://doi.org/10.1007/BF01082105
  5. Y. W. Kim and D. M. Dimiduk, JOM, 43(8), 40 (1991) https://doi.org/10.1007/BF03221103
  6. X. Li and I. Baker, Scr. Mater., 34(8), 1219 (1996) https://doi.org/10.1016/1359-6462(95)00667-2
  7. S. Taniguchi and T. Shibata, Oxid. Mat., 25, 201 (1986) https://doi.org/10.1007/BF00655897
  8. V. A. C. Haanappel, W. Glatz, H. Clemens and M. F. Stroosnijder, Mater. High Temp., 14(1), 19 (1997) https://doi.org/10.1080/09603409.1997.11689523
  9. V. Shankar Rao, R. G. Baligidad and V. S. Raja, Intermetallics, 10, 73 (2002) https://doi.org/10.1016/S0966-9795(01)00106-6
  10. B. W. Lee, W. C. Seo and C. Park, Kor. J. Mat. Res., 13(12), 791 (2003) https://doi.org/10.3740/MRSK.2003.13.12.791
  11. P. C. Patnaik and W. W. Smeltzer, Oxid. Met., 23(1), 53 (1985) https://doi.org/10.1007/BF01095807
  12. W. Kai and R. T. Hung, Oxid. Met., 48, 59 (1997) https://doi.org/10.1007/BF01675262
  13. W. Kai and D. l. Douglass, Oxid. Met., 39, 281 (1993) https://doi.org/10.1007/BF00665616
  14. T. Yosioka and T. Narita, Zairyo-to-Kankyo, 48, 214 (1999) https://doi.org/10.3323/jcorr1991.48.214
  15. B. W. Lee and W. Y. Kim, Corrosion Sci., 29(3), 177 (2000)