DOI QR코드

DOI QR Code

Fabrication of Three-dimensionally Ordered Macroporous Electrode Materials by Using PMMA Template

PMMA 구를 주형으로 이용한 3DOM 전극 구조체의 제조

  • Seo Kyoung Soo (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Jung Ha-Kyun (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Son Yongkeun (Department of Chemistry, Sungkyunkwan University)
  • 서경수 (한국화학연구원 화학소재연구부 형광물질연구팀) ;
  • 정하균 (한국화학연구원 화학소재연구부 형광물질연구팀) ;
  • 손용근 (성균관대학교 화학과)
  • Published : 2004.08.01

Abstract

Three-dimensionally ordered macroporous (3DOM) structures of the $LiCoO_2$ electrode materials for Li secondary batteries were fabricated by using the close-packed arrays of PMMA spheres served as templates. In order to successfully fabricate the cathode materials with highly ordered array form, the metal citrates were applied to new precursors. The precursor/template composites were prepared by the infiltration with metal citrate precursors into the voids of template. By removing the PMMA templates, then, the inverse opal structures with the uniform pores of narrow size distribution were resulted. It was confirmed that the 3DOM $LiCoO_2$ material is to take a single phase of rocksalt (R3m) structure. In addition, 3DOM $LiNiO_2$ and $LiMn_{2}O_4$ cathode materials were fabricated using an identical preparation procedure. Also, the morphology of the 3DOM cathode materials calcined at $500^{\circ}C\;to\;700^{\circ}C$ was observed by scanning electron microscope.

Keywords

References

  1. J. M. Tarascon and M. Armand, Nature, 414, 359 (2001) https://doi.org/10.1038/35104644
  2. S. Licht, B. Wang and S. Ghosh, Science, 285, 1039 (1999) https://doi.org/10.1126/science.285.5430.1039
  3. D. R. Sadoway and A. M. Mayes, MRS Bulletin, August 2002, pp. 590-596
  4. Z. S. Wronski, Int. Mater. Rev., 46, 1 (2001) https://doi.org/10.1179/095066001101528394
  5. C. J. Patrissi and C. R. Martin, J. Electrochem. Soc., 146, 3176 (1999) https://doi.org/10.1149/1.1392451
  6. Z. S. Peng, C. R. Wan and C. Y. Jiang, J. Power Sources, 72, 215 (1998) https://doi.org/10.1016/S0378-7753(97)02689-X
  7. S. M. Lala, L. A. Montoro and J. M. Rosolen, J. Power Sources, 124, 118 (2003) https://doi.org/10.1016/S0378-7753(03)00615-3
  8. A. Burukhin, O. Brylev, P. Hany and B. R. Churagulov, Solid State Ion., 151, 259 (2002) https://doi.org/10.1016/S0167-2738(02)00721-X
  9. Y. Li, C. Wan, Y. Wu, C. Jiang and Y. Zhu, J. Power Sources, 85, 294 (2000) https://doi.org/10.1016/S0378-7753(99)00159-7
  10. O. D. Veley, T. A. Jede, R. F. Lobo and A. M. Lenhoff, Nature, 389, 447 (1997) https://doi.org/10.1038/38921
  11. B. T. Holland, C. F. Blanford and A. Stein, Science, 281, 538 (1998) https://doi.org/10.1126/science.281.5376.538
  12. A. A. Zakhidov, R. H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti and V. G. Ralchenko, Science, 282, 897 (1998) https://doi.org/10.1126/science.282.5390.897
  13. J. S. Sakamoto and B. Dunn, J. Mater. Chem., 12, 2859 (2002) https://doi.org/10.1039/b205634h
  14. H. Yan, S. Sokolov, J. C. Lytle, A. Stein, F. Zhangand and W. H. Smyrl, J. Electrochem. Soc., 150, A1102 (2003) https://doi.org/10.1149/1.1590324
  15. Y. Xia, B. Gates, Y. Yin and Y. Lu, Adv. Mater., 12, 693 (2000) https://doi.org/10.1002/(SICI)1521-4095(200005)12:10<693::AID-ADMA693>3.0.CO;2-J
  16. Z. Lei, J. Li, Y. Zhang and S. Lu, J. Mater. Chem., 10, 2629 (2000) https://doi.org/10.1039/b005555g
  17. H. Yan, C. F Blanford, B. T. Holland, M. Parent, W. H. Smyrl and A. Stein, Adv. Mater., 11, 1003 (1999) https://doi.org/10.1002/(SICI)1521-4095(199908)11:12<1003::AID-ADMA1003>3.0.CO;2-K
  18. O. D. Veley and E. W. Kaler, Adv. Mater., 12, 531 (2000) https://doi.org/10.1002/(SICI)1521-4095(200004)12:7<531::AID-ADMA531>3.0.CO;2-S
  19. D. Zou, S. Ma, R. Guan, M. Park, L. Sun, J. J. Aklonis, and R. Salovey, J. Polym. Sci. Pol. Chem., Part A, 30, 137 (1992) https://doi.org/10.1002/pola.1992.080300118
  20. R. J. Gummow, M. M. Thackeray, W. I. F. David and S. Hull, Mater. Res. Bull., 27, 327 (1992) https://doi.org/10.1016/0025-5408(92)90062-5
  21. D. H. Kim, E. D. Jeong, S. P. Kim and Y. B. Shim, Bull. Korean Chem. Soc., 21, 1125 (2000)
  22. T. Ohzuku, A. Ueda, M. Nagayama, Y. Iwakoshi and H. Komori, Electrochim. Acta., 38, 1159 (1993) https://doi.org/10.1016/0013-4686(93)80046-3
  23. T. Nohma, H. Kurokawa, M. Uehara, M. Takahashi, K. Nishio and T. Saito, J. Power Sources, 54, 522 (1995) https://doi.org/10.1016/0378-7753(94)02140-X
  24. J. Morales, C. Peres-Vicente and J. L. Tirado, Mater. Res. Bull., 25, 623 (1990) https://doi.org/10.1016/0025-5408(90)90028-Z
  25. H. Hirano, R. Kanno, Y. Kawamato, Y. Takeda, K. Ymaura, M. Takano, K. Ohyama, M. Ohashi and Y. Yamaguchi, Solid State Ion., 78, 123 (1995) https://doi.org/10.1016/0167-2738(95)00005-Q
  26. H. Arai, S. Okada, H. Ohtsuka, M. Ichimura and J. Yamaki, J. Power Sources, 80, 261 (1995) https://doi.org/10.1016/S0378-7753(99)00075-0
  27. S. Yamada, M. Fujiwara and M. Kanda, J. Power Sources, 54, 209 (1995) https://doi.org/10.1016/0378-7753(94)02068-E
  28. G. X. Wang, S. Zhong, D. H. Bradhurst, S. X. Dou and H. K. Liu, J. Power Sources, 76, 141 (1998) https://doi.org/10.1016/S0378-7753(98)00153-0

Cited by

  1. Fabrication of a Fully Infiltrated Three-Dimensional Solid-State Interpenetrating Electrochemical Cell vol.154, pp.12, 2007, https://doi.org/10.1149/1.2794288