DOI QR코드

DOI QR Code

Study of pretreatment with ion implantation on substrate for GaN

GaN 성장을 위한 기판의 Ion Implantation 전처리에 관한 연구

  • Lee J. (Department of Materials Science & Engineering, Korea University) ;
  • Jhin J. (Department of Materials Science & Engineering, Korea University) ;
  • Byun D. (Department of Materials Science & Engineering, Korea University) ;
  • Lee J. S. (Korea Atomic Energy Research Institute) ;
  • Lee J. H. (Korea Atomic Energy Research Institute) ;
  • Koh W-K. (Seoul Branch, Korea Basic Science Institute)
  • Published : 2004.07.01

Abstract

The structural, electrical and optical properties of GaN epilayers grown on various ion-implanted sapphire(0001) substrates by MOCVD were investigated. Sapphire substrates have been widely adopted to grow high quality GaN epilayer despite the large differences of lattice constant and thermal expansion coefficient between them. So, GaN or AlN buffer layer and pre-treatment was indispensably introduced before the GaN epilayer growth. The ion-implanted substrate's surface had decreased internal free energies during the growth of the ions implanted sapphire(0001) substrates. The crystal and optical properties of GaN epilayers grown in ions implanted sapphire(0001) substrate were improved. Also, excessively roughened and modified surface by ions degraded the GaN epilyers. Not only the ionic radius but also the chemical species of implanted sapphire(0001) substrates could improve the properties of GaN epilayers grown by MOCVD. This result implies that higher quality of GaN epilayers was achieved by using ion-implanted sapphire(0001) substrate with various ions.

Keywords

References

  1. J. Jhin, P. Kang, D. Byun, E.K. Koh, J.S. Lee, J.H. Lee, J. Korean Phys. Soc., 42, S345 (2003)
  2. J. Kim, Y.J.Park, D. Byun, J. Jhin, M. Kang, E.K. KOH, Y. Moon and S.-K. Min, Jpn. J. Appl. Phys., 42, 3991 (2003) https://doi.org/10.1143/JJAP.42.3991
  3. S.C. Binari, L.B. Rowland, W. Kruppa, G. Kelner, K. Coverspike, D.K. Gaskill, Electron. Lett., 30, 1248 (1994) https://doi.org/10.1049/el:19940833
  4. S. Nakamura, T. Mikai, and M. Senoh, Appl. Phys. Lett., 64, 1687 (1994) https://doi.org/10.1063/1.111832
  5. I. Akasaki and H. Amano, J. Electrochem. Soc., 141, 2266 (1994) https://doi.org/10.1149/1.2055104
  6. S. Strite and H. Morkoc, J. Vac. Sci. technol., B10, 1237 (1992) https://doi.org/10.1116/1.585897
  7. H.-J. Kim, D. Byun, G. Kim and D.-W. Kum, J. Appl. Phys., 87, 7940 (2000) https://doi.org/10.1063/1.373478
  8. Y. Cho, E. Koh, Y. Park, D. Koh, E. Kim, Y. Moon, S. Leem, G. Kim and D. Byun, J. Cryst. Growth, 236, 538 (2002) https://doi.org/10.1016/S0022-0248(02)00840-0
  9. D. L. Smith, Thin-Film Depositon : Principle and Practice, McGraw-Hill, New York, Chapter 5 (1992)
  10. E. Koh, Y. Park, E. Kim, C. Park, S. Lee, J. Lee and S. Choh, J. Cryst. Growth, 218, 214 (2000) https://doi.org/10.1016/S0022-0248(00)00550-9