The Effect of Negative electric field using charged PTFE membrane on Bone Healing of Rabbit Long Bone

Charged membrane에 의한 negative electric field가 토끼 장골의 골 치유에 미치는 영향

  • Kwon, Yong-Su (Department of Periodontology, College of Dentistry, Kyungpook National University) ;
  • Park, Jin-Woo (Department of Periodontology, College of Dentistry, Kyungpook National University) ;
  • Lee, Jae-Mok (Department of Periodontology, College of Dentistry, Kyungpook National University) ;
  • Suh, Jo-Young (Department of Periodontology, College of Dentistry, Kyungpook National University)
  • 권용수 (경북대학교 치과대학 치주과학교실) ;
  • 박진우 (경북대학교 치과대학 치주과학교실) ;
  • 이재목 (경북대학교 치과대학 치주과학교실) ;
  • 서조영 (경북대학교 치과대학 치주과학교실)
  • Published : 2004.09.30

Abstract

The purpose of this study was to evaluate the effects of negatively electric field on bone healing in rabbit segmental long bone defects using negatively charged PTFE membrane. Ten millimeter segmental defects in the rabbit radius were used as the experimental model. After membranes were then charge injected using a corona-charging apparatus, the left defects were covered with non charged PTFE membranes as control groups, whereas the right defect was covered with negatively charged PTFE membranes as test group. The animals were divided into 4 groups of 2 rabbits each, and sacrificed at 2, 4, 6, and 8 weeks. Histomorphometric analysis showed a more newly formed bone in negatively charged membrane at early healing period. At 2 weeks, the proportion of new bone formation to total defect area was 0.32% in control group, 1.10% in experimental group. At 4 weeks, the proportion of new bone formation to total defect area was 6.86% in control, and 13.75% in experimental. At 6 and 8 weeks, no obvious difference was found between the two groups but newly formed bone in test groups were slightly more than that in control groups. In conclusion, negatively charged membranes showed more newly bone tissue than noncharged membranes at an early healing period. Although the number of samples was small, this study showed that the combination of negatively electrical stimulation and P1FE membrane may be of value in long bone healing.

골재생을 위한 술식은 자가골, 합성골 등의 이식술, 골견인술, 골유도 재생술 등이 있으며, 더 나은 결과를 위해서 성장 인자나 cytokine의 적용, 전기적 자극 등이 이용될 수 있다. 이 중 골재생을 위한 전기적 자극을 이용한 골재생 방법에서 비교적 양호한 결과가 보고되어지고 있으며, 전기적 자극은 크게 direct current, inductive coupling, capacitive coupling으로 나뉘어 사용, 연구되어지고 있다. 하지만, 위의 전기적 자극들은 비교적 침습적이고, 환자들에게 불편감을 줄 수 있으며, 부가적인 장치가 필요한 단점이 있다. 따라서, 본 실험에서는 골재생을 촉진하기 위한 비침습적인 전기자극의 방법으로, negatively charged membrane을 이용하여, 토끼 요골의 골절성 결손부에서 negative electric field가 골재생에 미치는 영향을 연구하고자 하였다. 8마리 토끼의 양 요골에 10mm의 골절성 결손부를 형성한 후, 코로나 방전 장치로 -l000V로 대전시킨 polytetrafluoroethylene membrane을 사용하여, 실험군에는 negatively charged membrane을, 대조군에는 noncharged membrane을 적용시킨 후, 2, 4, 6, 8주째 2마리씩 희생하여 조직학적, 조직형태학적 분석을 실시하였다. 2주째, 대조군에서 골결손부에 대한 신생골의 비율은 0.32%, 실험군에서는 1.10%로 나타났으며, 4주째 대조군에서 골결손부에 대한 신생골의 비율은 6.86%, 실험군에서는 13.75%로, 대조군에 비해 실험군에서 더 많은 양의 신생골이 관찰되었다. 6주와 8주째도 대조군에 비해 실험군에서 더 많은 신생골이 관찰되었으나, 그 차이는 크지 않았다. 결론적으로, 토끼 요골의 골절성 결손부의 골치유에서 negatively charged membrane을 이용한 전기적 자극은 초기 골치유를 촉진시키며, 따라서, 이러한 방법의 전기극은 장골의 치유에 있어 비침습적이며, 유용한 수단이라고 사료된다.

Keywords

References

  1. Dahlin C, Sennerby L, Lekholm D, Linde A, Nyman S. Generation of new bone around tita-nium implats using a membrane technique: an experimental study in rabbits. Int J Oral Maxillofac Implants 1989;4: 19-25
  2. Seibert J, Nyman S. Localized ridge augmenta-tion in dogs: a pilot study using membranes and hydroxyapatite. J Periodontol 1990;61:157-163 https://doi.org/10.1902/jop.1990.61.3.157
  3. Schenk RK, Buser D, Hardwick WR, Dahlin C. Healing pattern of bone regeneration in mem-brane-protected defects: a histologic study in the canine mandible. Int J Oral Maxillofac Implants 1994;9:13-29
  4. Jovanovic SA, Schenk RK, Orsini M, Kenney EB. Supracrestal bone formation around dental implnts: an experimental dog study. Int J Oral Maxillofac Implants 1995;10:23-31
  5. Hammerle CH, Karring T. Guided bone regener-ation at oral implant sites. Periodontal 2000 1998;17:151-175 https://doi.org/10.1111/j.1600-0757.1998.tb00132.x
  6. Towfighi P, Arnold R. Use of a titanium-rein-forced membrane in periodontal regeneration: a case report. Compend Contin Educ Dent 1995;16:920-924
  7. Lundgren D, Lundgren AK, Sennerby L, Nyman S. Augmentation of intramembraneous bone beyond the skeletal envelope using an occlusive titanium barrier: An experimental study in the rabbit. Clin Oral Impl Res 1995;6:67-72 https://doi.org/10.1034/j.1600-0501.1995.060201.x
  8. Schmid J, Hammerle, CHF, Fluckiger L, Winkler JR, Olah AJ, Gogolewski S, Lang NP. Blood-filled spaces with and without filler materials in guided bone regeneration: A comparative exper-imental study in the rabbit using bioresorbable membranes. Clin Oral Impl Res 1997;8:75-81 https://doi.org/10.1034/j.1600-0501.1997.080201.x
  9. Terranova VP, Wikesjo UME. Extracellular matri-ces and polypeptide growth factors as mediantors of functions of cells of the periodon-tium: A riview, J Periodontol 1987;58:371-380
  10. Shandler HS, Weinstein S, Nathan LE. Facilitated healing of osseous lesions in the canine mandible after electrical stimulation. J Oral Maxillofac Surg 1979;37:787-792
  11. Fukada E, Yasuda I. On the piezoelectric effect of bone. J Physical Soc Jap 1957;12:1158-1162 https://doi.org/10.1143/JPSJ.12.1158
  12. Yasuda I. Fundamental aspects of fracture treatment. J Kyoto Med Soc 1953;4:395
  13. Bassett CAL, Pawluk RJ, Becker RO. Effects of electric currents on bone formation in vivo. Nature 1964;204:652 https://doi.org/10.1038/204652a0
  14. Friedenberg ZB, Harlow MC, Brighton CT. Healing of non-union of the medial malleolus by means of direct current. A case report. J Trauma 1971;11:883
  15. Brighton CT, Adler S, Blank J. Cathodic oxygen consumption and electrically induced osteogen-esis. Clin Orthop 1975;107:277-289 https://doi.org/10.1097/00003086-197503000-00033
  16. Jahn TL. A possible mechanism for the effect of electrical potential on apatite formation in bone. Clin Orthop 1968;56:261-273
  17. Inoue S, Ohashi S, Kajikawa. The effects of elec-tric stimulation on the differentiation to the bone. Orthop Res Sci 1980;7:501-507
  18. Matsunaga S, Sakou T, Yoshikuni N. Intramedullary callus induced by weak direct current stimulation: Serial changes in the alkaline phosphatase activity at the site of electricity induced callus formation. J Japan Bioelect Res Soc 1988;2:67-71
  19. Davidovitch Z, Korostoff E, FinkelsonMD. Effect of electric currents on gingival cyclic nucleotides in vivo. J Periodont Res 1980;15:355-362
  20. Davidovitch Z, Shanfeld L, Montgomery PC. Biochemical mediators of the effects of mechani-cal forces and electric currents on mineralized tissues. Calcif Tissue Int 1984;36:S86-S97 https://doi.org/10.1007/BF02406140
  21. Fizsimmons RJ, Farley JR, Adey WR, Baylink DJ. Frequency dependence of increased cell proliferation, in vitro, in exposures to a low-ampli-tude, low-frequency electric field: Evidance for dependence on increased mitogen activity released into culture medium. J Cell Physiol 1989;139:586-591 https://doi.org/10.1002/jcp.1041390319
  22. Fizsimmons RJ, Strong D, Mohan S, Baylink DJ. Low-amplitude, low-frequency electric field-stimulated bone cell proliferation may in part be mediated by increased IGF-II release. J Cell Physiol 1992;150:84-89 https://doi.org/10.1002/jcp.1041500112
  23. Wang Q, Xie Y, Zhong SZ, Zhang ZQ. The electrochemical reaction in tissue culture medium under direct current stimulation. Chin J Bioeng 1994;11:143-146
  24. Wang Q, Zhong S, Ouyang J, Jiang L, Zhang ZQ, Xie Y, Luo S. Osteogenesis of electrically stimu-lated bone cells mediated in part by calcium ion. Clin Orthop 1998;348:259-268
  25. Dmitriev AE, Mordrinov VI, Tatevosyan AS. Electric stimulation as a method of acceleration of healing of crural bone fractures. Vestn Khir Im II Grek 1976;116:73-75
  26. Togawa Y. Experimental study on the effect of direct currents on the internal remodeling of a long bone cortex. Nippon Skikeigeka Gakkai Zasshi 1983;57:817-835
  27. Bassett CA, Pawluk RJ, Pilla AA. Augmentation of bone repairs by inductively coupled electro-magnetic fields. Science 1974;184:575-577 https://doi.org/10.1126/science.184.4136.575
  28. Fizsimmons RJ, Ryaby TJ, Magee FP, Baylink DJ. Combined magnetic fields increased net calcium flux in bone cells. Calcif Tissue Int 1994;55:376-380 https://doi.org/10.1007/BF00299318
  29. Heermeier K, Spanner M, Trager J, Gradinger R, Strauss PG, Kraus W, Schmidt J. Effects of extremely low frequency electromagnetic field (EMF) on cellagen type I mRNA expression and extracellular matrix synthesis of human osteoblastic cells. Bioelectromagnetics 1998;19:222-231 https://doi.org/10.1002/(SICI)1521-186X(1998)19:4<222::AID-BEM4>3.0.CO;2-3
  30. Abeed RI, Naseer M, Abel EW. Capacitively cou-pled electrical stimulation treatment: results from patients with failed long bone fracture unions. J Orthop Trauma 1998;12:510-513 https://doi.org/10.1097/00005131-199809000-00015
  31. Shigino T, Ochi M, Kagami H, Sakaguchi K, Nakade O. Application of capacitively coupled electric field enhances periimplant osteogenesis in the dog mandible. Int J Prosthodont 2000;13:365-372
  32. Kubota K, Yoshimura N, Yokota M, Fizsimmons RJ, Wikesjo UME. Overview of effects of electri-cal stimulation on osteogenesis and alveolar bone. J Periodontol 1995;66:2-6 https://doi.org/10.1902/jop.1995.66.1.2
  33. Chierico A, Valentini R, Majzoub Z, Piattelli A, Scarano A, Okun L, Cordioli G. Electrically charged GTAM membranes stimulate osteogene-sis in rabbit calvarial defects. Clin Oral Impl Res 1999;10:415-424 https://doi.org/10.1034/j.1600-0501.1999.100508.x
  34. Ferrier J, Ross SM, Kanehisa J, Aubin JE. Osteoclasts and osteoblasts migrate in opposite kirections in response to a constant electric field. J Cell Physiol 1986;129:283-288 https://doi.org/10.1002/jcp.1041290303
  35. Far O Nielsen F. Guided bone induction. A method in the treatment of diaphyseal long bone defect. Royal Dental College, Aarhus, Denmark 1992
  36. Bluhm AE, Laskin DM. The effect of polytetraflu-oroethylene cylinders on osteogenesis in rat fibular defects: a preliminary study. J Oral Maxillofac Surg 1995;53:163-166 https://doi.org/10.1016/0278-2391(95)90395-X
  37. Nyman R, Magnusson M, Sennerby L, Nyman S, Lundgren D. Membrane-guided bone regenera-tion. Segmental radius defects studied in the rab-bit. Acta Orthop Scand 1995;66:169-173 https://doi.org/10.3109/17453679508995515
  38. Brighton CT, Pollack SR. Treatment of nonunion of the tibia with a capacitively coupled electrical field. J Trauma 1984;24:153-155 https://doi.org/10.1097/00005373-198402000-00012
  39. Valentini RF, Vargo TG, Gardella JA, Aebischer P. Electrically charged polymeric substrates enhance nerve fiber outgrowth in vitro. Biomaterials 1992;13:183-190 https://doi.org/10.1016/0142-9612(92)90069-Z
  40. Weinstein AM, Kalwitter JJ, Cleveland TW, Amoss DC. Electrical stimulation of bone growth into porous $AL_{2}O_{3}$. J Biomed Mater Res 1976;10:231-247 https://doi.org/10.1002/jbm.820100205
  41. Marino AA, Gross BD, Specian RD. Electrical stimulation of mandibular osteotomies in rab-bits. Oral Surg Oral Med Oral Pathol 1986;62:20-24 https://doi.org/10.1016/0030-4220(86)90065-4