분포형 촉각센서를 위한 압전성 폴리(비닐리덴 플루오라이드) 필름의 극화 특성

Poly(vinylidene fluoride) Piezoelectric Film Characteristics by Poling Conditions for Distributed Tactile Sensor

  • 이경섭 (성균관대학교 고분자공학과) ;
  • 김동욱 (성균관대학교 고분자공학과) ;
  • 김형태 (성균관대학교 기계공학과) ;
  • 정광목 (성균관대학교 기계공학과) ;
  • 최혁렬 (성균관대학교 기계공학과) ;
  • 남재도 (성균관대학교 고분자공학과)
  • Lee Kyungsub (Department of Polymer Science and Engineering, Sungkyunkwan University) ;
  • Kim Dongouk (Department of Polymer Science and Engineering, Sungkyunkwan University) ;
  • Kim Hyungtae (Department Mechanical Engineering, Sungkyunkwan University) ;
  • Jung Kwangmok (Department Mechanical Engineering, Sungkyunkwan University) ;
  • Choi Hyoukryeol (Department Mechanical Engineering, Sungkyunkwan University) ;
  • Nam Jae-Do (Department of Polymer Science and Engineering, Sungkyunkwan University)
  • 발행 : 2004.09.01

초록

가해준 하중에 따라 폴리(비닐리덴 플루오라이드) (PVDF) 필름에서 발생하는 전압을 측정하며 분포형 촉각센서로서의 특성을 연구하였다. PVDF 필름에 전기장과 온도를 달리하면서 극화 (poling)의 변화를 주었고 이에 따른 필름의 압전성을 나타내는 $\beta$-결정상의 피크를 FT-IR. DSC와 XRD를 사용하여 확인하였다. 본 연구에서 사용된 온도와 전압의 영역에서는 극화 온도가 증가함에 따라 그리고 극화 전압이 증가함에 따라 $\beta$-결정상은 증가하였으며, 이에 따라 유전상수가 역시 증가하였다. 8$\times$8어레이 (array)로 제작된 촉각센서에 힘을 가하여 극화에 따른 전압 발생량을 측정한 결과, 극화가 많이 된 시편의 경우 높은 전압이 발생하는 것을 확인하였다.

The poling characteristics of PVDF (poly(vinylidene fluoride)) film was investigated by measuring the electric voltage generated by the external load for the distributed tactile sensor applications. The poling conditions for the PVDF films were controlled by changing temperature and electric field, and the resulting crystal structure of the $\beta$-phase crystal was confirmed by FT-IR, DSC, and XRD experiments. The $\beta$-phase crystal was increased with the poling temperature and poling voltage, and subsequently the permittivity of the Poled PVDF films was increased. Finally, the prototype tactile sensor was tested by a 8 $\times$ 8 may circuit exhibiting high voltage signal for the highly poled PVDF films.

키워드

참고문헌

  1. M. J. Yoon, D. K. Kwon, G. H. Yu, and S. C. Lee, Proc. Inter. Conf. on Control, Automation and Systems, 1827-1830, 17-21, October (2001)
  2. W. G. Cady, Piezoelectricity, McGraw-Hill, New York, 1946
  3. E. Fukada, J. Phys. Soc, Jpn., 10, 149 (1955) https://doi.org/10.1143/JPSJ.10.149
  4. E. Fukada, Ultrasonics, 6, 229 (1968)
  5. D. C. Lee and K. S. Park, Polymer (Korea), 16, 631 (1992)
  6. H. Kawai, Jpn. J. Appl. Phys., 8, 975 (1969) https://doi.org/10.1143/JJAP.8.975
  7. I. H. Park, Polymer(Korea), 26, 227 (2002)
  8. B. C. Kim et al., Polymer(Korea), 26, 462 (2002)
  9. B. K. Choi and S. H. Park, Polymer(Korea), 26, 179 (2002)
  10. M. Murayama, J. Polym. Sci., Polym. Phys. Ed., 13, 929 (1975) https://doi.org/10.1002/pol.1975.180130505
  11. M. Tamura, S. Magiwara, S. Matsumoto, and N. Ono, J. Appl. Phys., 48, 513 (1977) https://doi.org/10.1063/1.323695
  12. Y. Wada and R. Hayakawa, Ferroelectrics, 32, 115 (1981) https://doi.org/10.1080/00150198108238681
  13. F. I. Mopsik and M. G. Broadhurst, J. Appl. Phys., 46, 4204 (1975) https://doi.org/10.1063/1.321433
  14. E. W. Aslaksen, J. Chem. Phys., 57, 2358 (1972) https://doi.org/10.1063/1.1678594
  15. M. Date, Polym. J., 8, 60 (1976) https://doi.org/10.1295/polymj.8.60
  16. M. G. Broadhurst et al., J. Appl. Phys., 49, 4992 (1978) https://doi.org/10.1063/1.324445
  17. T. Furukawa, J. X. Wen, K. Suzuki, Y. Takashima, and M. Data, J. Appl. Phys., 23, 1434 (1986)
  18. J. X. Wen, Jpn. J. Appl. Phys., 23, 1434 (1986) https://doi.org/10.1143/JJAP.23.1434
  19. S. Tasaka and S. Miyata, Ferroelectrics, 32, 17 (1981) https://doi.org/10.1080/00150198108238668
  20. E. Fatuzzo and W. J. Merz, Ferroelectricity, North Holland Pub, Co., Amsterdam, 1967
  21. T. T. Wang, J. M. Herbert, and A. M. Glass, The Applications of Ferroelectric Polymers, Blackie, Glasgow and London, 1988
  22. G. T. Davis and J. E. Mckinney, J. Appl. Phys., 49, 4998 (1978) https://doi.org/10.1063/1.324446
  23. B. S. Kim, J. Y. Lee, and P. S. Porter, Polym. Eng. Sci., 38, 1359 (1998) https://doi.org/10.1002/pen.10306