Effects of Carbon Substrates on Exopolysaccharide Production by Enterobacter sp.

Enterobacter sp. 의 다당 생산에 미치는 탄소원 기질의 영향

  • Lee Ju-Ha (Ganong Bio Co. Ltd.) ;
  • Lee Shin-Young (School of Biotechnology and bioengineering, Kangwon National University)
  • Published : 2005.02.01

Abstract

The effects of carbon sources for exopolysaccharide production during batch cultivation of an Enterobacter sp. isolated from the composter were investigated. The highest amount of exopolysaccharide was obtained when lactose was used as carbon source. Lactose in medium was converted into glucose and galactose. Glucose was metabolized fast and was completely consumed, but about $20\%$ of lactose was accumulated as galactose. On the other hand, enzyme activity was about $350\~450$ unit with the increase of lactose concentration. Thus, it was considered that the exopolysaccharide might be produced in the course of that lactose was hydrolyzed into glucose and galactose by $\beta-galactosidase$ with respect to that enzyme activity on lactose hydrolysis was accorded to the exopolysaccharide production. When glucose and galactose were added to lactose medium, respectively, it could be considered that glucose was as a repressor and galactose was as a inducer for $\beta-galactosidase$ synthesis even though the mechanisms were not elucidated. The increase of lactose concentration was almost ineffective to the specific growth rate $(0.133\~0.151\;hr^[-1})$ but showed the difference in the biomass content. The higher carbon source concentration, the more residual sugar remained. It was assumed that the optimum lactose concentration for exopolysaccharide production was $30\~70g/L.$ On the other hand, it was considered that the nitrogen acted as growth limiting nutrients to the cell growth. In the cases of 30 and 70 g/L of the fixed carbon concentrations, the increase of the nitrogen sources concentration caused a remarkable increase within the range of $0.059\~0.225\;hr^{-1}$ and $0.141\~0.237hr^{-1}$ of the specific growth rate, respectively, while there was no significant difference in biomass.

유기성 폐기물의 composting에 사용된 토양유래의 복합 발효 미생물 제제로부터 분리, 동정된 다당 생성 균주인 Enterobacter sp.를 이용하여 서로 다른 기질 및 이의 농도에 따른 발효 특성을 조사하였다. 본 균주는 단당 및 단당의 혼합 탄소원인 경우보다는 lactose에서의 균체 생육 및 다당 생산량이 매우 높아 lactose를 효율적으로 이용하는 특징을 보였다. 공급된 lactose는 $20\%$ 정도가 galactose로 발효액에 축적되어 서서히 감소하였고, glucose는 소량이 존재하였으나, 곧 고갈되었다. 한편, lactose 농도를 증가시킨 결과, 효소 활성도의 증가폭은 약 $350\~450$ unit를 나타내었다. 즉, lactose의 분해 효소 활성도는 다당 생성 경향과 잘 일치하여 $\beta-galactosidase$에 의해 lactose가 구성당인 glucose와 galactose로 분해되는 과정에서 다당이 생성되는 것으로 추론되었다. 또 lactose 배지에 첨가한 glucose와 galactose는 각각 효소 생성의 repressor와 inducer로써 작용하는 것으로 판단하였다. 한편, 탄소원 농도를 증가한 결과, 비증식속도 $(0.133\~0.151hr^{-1})$에는 거의 영향을 미치지 않았고, 균체량의 차이를 나타내었으며, 고농도의 탄소원을 사용할 경우는 배지내의 잔존 당량이 높아져 수율이 감소하였으므로, 다당 생산의 최적 lactose 농도는 $30\~70g/L$인 것으로 판단하였다. 반면, 탄소원의 농도를 각각 30 및 70 g/L로 고정시킨 후, 질소원의 농도를 달리하였을 때는 질소원 농도의 증가로 균체량보다는 비증식속도가 $0.059\~0.225 hr^{-1}$$0.141\~0.237 hr^{-1}$로 크게 증가하므로 질소원이 증식 속도의 제한 기질로 작용하는 것으로 판단하였다.

Keywords

References

  1. Kim, D. J. and S. Y. Lee (2001), Isolation of the exo-polysaccharide producing Enterobacter sp. and some physicochemical properties of the polysaccharide produced by this strain, Korean J. Biotechnol. Bioeng. 16, 370-375
  2. Lee, J. H. and S. Y. Lee (2002), Rheological properties of culture broth during exo-polysaccharide fermentation of Enterobacter sp., Food Eng. Prog. 6, 10-16
  3. Stauffer, K. R. and J. G. Leeder (1978), Extracellular microbial polysaccharide production by fermentation on whey or hydrolyzed whey, J. Food Sci. 43, 756-758 https://doi.org/10.1111/j.1365-2621.1978.tb02411.x
  4. Wanner, B. L., R. Kodaira, and F. C. Neidhardt (1978), Regulation of lac operon expression: Reappraisal of the theory of catabolite repression, J. Bacteriol. 136, 947-954
  5. Postma, P. W. and J. W. Lengeler (1985), Phosphoenolpyruvate: Carbohydrate phosphotransferase system of bacteria, Microbiol. Rev. 49, 232-269
  6. Dills, S. S., A. Apperson, M. R. Schmidt, and M. H. Saier (1980), Carbohydrate transport in bacteria, Microbiol. Rev. 44, 385-418
  7. Chassy, B. M. and J. Thompson (1983), Regulation of lactosephosphoenol pyruvate-dependent phosphotransferase system and $\beta$-D-Phospho-galactoside galactohydrolase activities in Lactobacillus casei, J. Bacteriol. 154, 1195-1203
  8. Thompson, J. and T. D. Thomas (1977), Phosphoenolpyruvate and 2-phosphoglycerate: Endogenous energy source(s) for sugar accumulaation by starved cells of Streptococcus lactis, J. Bacteriol. 130, 583-595
  9. Scarborough, G. A. (1985), Binding energy, conformational change and the mechanism of transmembrane solute movements, Microbiol. Rev. 49, 214-231
  10. Crow, V. L., G. P. Davey, L. E. Pearce, and T. D. Thomas (1983), Plasmid linkage of the D-tagatose 6-phosphate pathway in Streptococcus lactis: Effect on lactose and galactose metabolism, J. Bacteriol. 153, 76-83
  11. Vakil, J. R. and K. M. Shahani (1969), Carbohydrate metabolism of lactic acid cultures. II. Different pathways of lactose metabolism of Streptococcus lactis and their sensitivity to antibiotics, J. Dairy Science 52, 162-168 https://doi.org/10.3168/jds.S0022-0302(69)86524-0
  12. Wilson, D. B. (1978), Cellular transport mechanisms, Ann. Rev. Biochem. 47, 933-965 https://doi.org/10.1146/annurev.bi.47.070178.004441
  13. Flatt, J. H., T. A. Cooper, J. M. Gonzalez, and D. E. Dogger (1992), An anionic galactomannan polysaccharide gum from a newly-isolated lactose-utilizing hacterium. II. Fermentation kinetics and lactose transport, Biotechnol. Prog. 8, 335-339 https://doi.org/10.1021/bp00016a010
  14. Miller, J. B., D. J. Scott, and N. K. Amy (1987), Molybdenumsensitive transcriptional regulation of the ChID locus of Ecoli., J. Bacterial. 169, 1853-1860 https://doi.org/10.1128/jb.169.5.1853-1860.1987
  15. Shin, Y, C, H. S. Lee, and S. M. Byun (1990), Application and production of pullulan, Biochem. Engin. Biotechnol. 4, 48-55
  16. Shin, Y. C., J. K. Han, and S. M. Byun (1990), Effects of aeration rates and rheological properties of fermentation broth on pullulan fermentation, Kor. J. Food Sci. Technol. 22, 533-538
  17. Landon, R. S., R. C. S. Law, and C. Webb (1993), Fermentation broth rheology during dextran productiion by Leuconostoc mesenteroides B512 (F) as a possible tool for control, Appl. Microbiol Biotechnol. 40, 251-257
  18. Ahn, D. H. and Y. C. Chung (1992), Biopolymer production of Zoogloea ramigera in batch, fed-batch and continuous culture processes, Kor. J. Appl. Microbiol. Biotechnol. 20, 196-202
  19. Haggstrom, L. and C. Forberg (1986), Significance of an extracellular polymer for the energy metabolism in Clostridium acetobutylicum: A hypothesis, Appl. Microbiol. Biotechnol. 23, 234-239
  20. Yoon, S. S., C. M. Kim, R. Ryung, and J. H. Yu (1991), Transport and utilization of lactose by alkalophilic Bacillus sp., Kor. J. Appl. Microbiol. Biotechnol. 19, 128-134
  21. Kim, D. W., J. C. Lee, K. Y. Lee, H. W. Ryu, and J. H. Kim (1995), A useful material production from whey: Effect of carbon sources on zooglan production by Zoogloea ramigera, Kor. J. Biotechnol. Bioeng. 10, 221-229
  22. Paigen, K. and B. Williams (1970), Catabolite repression and other control mechanisms in carbohydrate utilization, Adv. Microb. Physiol. 4, 251-354
  23. Lee, J. K. (1995), Mechanism of carbon catabolic repression by Gram-positive bacteria and enteric bacteria, The Microorganism and Industry 21(3), 262-269
  24. Straight, J. V., D. Ramkrisbna, S. J. Parulekar, and N. B. Jansen (1989), Bacterial growth on lactose: An experimental investigation, Biotechnol. Bioeng. 34, 705-716 https://doi.org/10.1002/bit.260340515
  25. Son, H. J., K. P. Min, and S. J. Lee (1995), Production of poly(Hydroxy-butyric-Co-Hydroxyvaieric) acid by Pseudomonas sp. HJ, Kor. J. Biotechnol. Bioeng. 10, 349-357
  26. Burton, K. A., M. C. Cadmus, A. A. Lagada, P. A. Sandfotd, and P. R. Watson (1976), A unique biopolymer from Rhinocladiella mansoni NRRL Y-6272: Production in 20 liter fermentors, Biotechnol. and Bioeng. 18, 1669-1673 https://doi.org/10.1002/bit.260181203