Effect of Electrical Field on Ultrafiltration for Protein Separation

단백질 분리를 위한 한외여과에서의 전기장의 영향

  • Koo Ja-Kyung (Department of Applied Chemical Engineering, Korea University of Technology and Education) ;
  • Son Dongho (Department of Applied Chemical Engineering, Korea University of Technology and Education) ;
  • Lee Yunhee (Department of Applied Chemical Engineering, Korea University of Technology and Education) ;
  • Cho Namjun (Department of Applied Chemical Engineering, Korea University of Technology and Education) ;
  • Jang Dong Il (Cotde Co. Inc.)
  • 구자경 (한국기술교육대학교 응용화학공학과) ;
  • 손동호 (한국기술교육대학교 응용화학공학과) ;
  • 이윤희 (한국기술교육대학교 응용화학공학과) ;
  • 조남준 (한국기술교육대학교 응용화학공학과) ;
  • 장동일 ((주)콧데)
  • Published : 2005.06.01

Abstract

The effects of electrical fields on the efficiencies in ultrafiltration for protein separation were explored. The experiments were proceeded under constant transmembrane pressure (THP) using protein (albumin and lysozyme) solutions. For ultrafiltrations, cellulose membranes with molecular weight cut off (MWCO) 30 kDa were used. It is found that electrical field improved the filtration flux of albumin solution. The electrical field showed another interesting effect for filtration of protein solution. Depending on the electrical charges of protein molecules, the electrical field promoted or hindered the permeation of proteins through membranes. With the effect of electrical field, not only the permeation flux but also the selectivity of ultrafiltration could be improved.

단백질 분리를 위한 한외여과에서의 전기장의 영향에 대하여 조사하였다. 실험은 균일한 막간압력차(2.5 bar)에서 알부민과 라이소자임 용액을 이용하여 이루어졌으며 분리막으로는 셀룰로즈 재질의 분획분자량(MWCO) 30 kDa 한외여과막을 사용하였다. 실험결과 전기장은 알부민 용액을 여과할 때의 투과유속(permeation flux)을 크게 증가시키는데에 도움이 되었다. 투과유속의 개선 이외에도 전기장은 또 다른 흥미로운 효과를 보였다. 단백질 분자의 하전 부호에 따라 전기장은 단백질의 투과를 촉진시키기도 하고 저하시키기도 하였다. 이러한 전기장의 효과를 이용하여 한외여과에서의 용액 투과유속뿐만 아니라 투과선택도도 개선할 수 있었다.

Keywords

References

  1. V. Maugueijo, M. N. de Pinho, and M. N. Geraldes, 'Numerical and experimental study on mass transfer in lysozyme ultrafiltration', Desalination, 145, 193 (2002)
  2. H.-M. Yeh, 'Decline of permeate flux for ultrafiltration along membrane tubes', Desalination, 145, 153 (2002) https://doi.org/10.1016/S0011-9164(02)00401-0
  3. X. Hu, E Bekassy-Monlar, and A. Koris, 'Study of modelling transmembrane pressure and gel resistance in ultrafiltration', Desalination, 163, 355 (2004)
  4. 염경호, '고분자 용액의 한외여과에서의 농도분극층 저항에 관한 연구', 멤브레인. 2, 59 (1992)
  5. 육영재, 염경호, '초음파를 이용한 한외여과의 성능 향상', 멤브레인. 13, 283 (2003)
  6. H.-M. Wang, C.- Y Li, S.-J. Chen, T.- W. Cheng, and T.-L. Chen, 'Abatement of concentration polarization in ultrafiltration using n-hexadecane/water two phase flow', J. Membr. Sci., 238, 1 (2004)
  7. T. W. Cheng and J. G. Wu, 'Quantitative flux analysis of gas-liquid two-phase ultrafiltration', Sep. Sci. Technol., 38, 817 (2003)
  8. C. H. Muller, G. P. Agarwal, T. Melin, and T. Wintgens, 'Study of ultrafiltration of single and binary protein solution in a thin spiral channel module', J. Membr. Sci., 227, 51 (2003)
  9. E. Iritani, Y. Mukai, and Y. Kiyotomo, 'Effects of electric field on dynamic behaviors of dead-end inclined and downward ultrafiltration of protein solutions', J. Membrane Sci., 164, 57 (2000)
  10. C. C. Yang and T.-Y Yang, 'Reclamation of high quality water from treating CMP wastewater by a novel crossflow electrofiltration/electrodialysis process', J. Membr. Sci., 233, 151 (2003)
  11. M. Balakrishnan and G. P. Agarwal, 'Protein fractionation in a vortex flow filter I: Effect of system hydrodynamics and solution environment on single protein transmission', J .Membr. Sci., 112, 47 (1996)