Extraction Characteristics of Flavonoids from Lonicera flos by Supercritical Fluid Carbon Dioxide ($SF-CO_2$) with Co-solvent

초임계유체 $CO_2$ 및 Co-solvent 첨가에 따른 금은화(Lonicera fles)의 Flavonoid류 추출특성

  • Suh, Sang-Chul (Department of Food Science and Technology, Kyungpook National University) ;
  • Cho, Sung-Gill (Department of Food Science and Technology, Kyungpook National University) ;
  • Hong, Joo-Heon (Department of Food Science and Technology, Kyungpook National University) ;
  • Choi, Yong-Hee (Department of Food Science and Technology, Kyungpook National University)
  • Published : 2005.04.30

Abstract

Effects of co-solvent polarity, citric acid, pressure, temperature, run time, and co-solvent ratio on extraction of major flavonoids from Lonicera Flos were investigated using supercritical fluid $CO_{2}(SF-CO_{2})$. HPLC analysis revealed addition of pure methanol resulted in low extraction yield of major flavonoids, luteoloin (Lu), Quercetin (Qu), Apigenin (Ap). Under same condition, as co-solvent polarity increased, yields of major flavonoids increased gradually, At optimum co-solvent extraction condirion of 60% aqueous methanol (10%, v/v), yields of Lu, Qu, and Ap were 42.09, 28.18, and 3.49 mg/100 g, respectively. Addition of citric acid to 60% aqueous methanol gave higher, with addition of 1% citrie acid resulting in highest yields of 63.2 (Lu), 39.35 (Qu), and 5.79 (Ap) mg/100 g. Optimum extraction conditions of major flavonoids were 200 bar, $50^{\circ}C$, 60 min, and $CO_{2}$-methanol-water(20: 1.8: 1.2).

순수 methanol을 cd-solvent로 첨가하였을 때 소량의 수율을 얻을 수 있었던 반면 methanol에 물을 첨가하여 수용액을 조제한 후 각각 첨가하였을 때 co-solvent의 극성도 증가에 비례하여 수율이 현저하게 증가하였다. 60% methanol을 첨가하였을 때 수율이 가장 높았으며 순수 methanol 첨가구와 비교하여 luteolin이 5.9배, quercetin이 4.1배, apigenin이 7.8배 가량 증가하였다. Co-solvent에 citric acid를 농도별로 첨가한 결과 첨가량 1%까지는 추출수율이 농도 비례적으로 증가하는 경향을 나타내어 대조구에 비해 대략 luteolin이 14.64mg/100g, quercetin이 10.17mg/100g, apigenin이 2.4mg/100g의 유의적인 증가율을 보였으나 그 이상의 농도에서는 소량 감소하는 경향을 보였다. 한편 산을 첨가한 모든 조건에서 대조구보다 높은 수율을 얻을 수 있었다. 추출수율이 가장 우수하였던 citric acid가 1% 첨가된 60% aqueous methanol을 co-solvent로 초임계상태에 첨가하였을 때 공정압력이 100bar에서 200ber로 증가함에 따라 추출수율이 비례적으로 증가하였으나 250bar 이상에서는 감소하는 경향을 나타내었다. 온도에 따라서는 $40^{\circ}C$에서 $50^{\circ}C$까지는 증가하는 경향을 보이다 이상의 온도에서는 오히려 감소하였다. 추출 시간의 증가와 더불어 추출 수율은 유의적으로 증가하다가 60분일 때 최대값을 보였으며 90분 이상의 추출시간에서는 추출수율이 거의 일정해졌다. $CO_{2}$ 대비 cosolvent를 15(0.3mL/min)% 첨가하였을 때 최대 추출수율을 보였으며 25% 이상의 첨가구에서는 첨가량은 증가하였으나 수율은 감소하는 경향을 보였다. 것으로 나타났다. 그러므로 감마선 조사 및 저온저장($10^{\circ}C$)은 김밥재료 뿐만 아니라 김밥의 미생물 제어에 효과적인 것으로 확인되었다.와 비례하는 경향을 나타내었다. 또한 FA-swelling mica의 중금속 이온의 선택성은 Pb>Cu>Cd$\geq$Zn 순으로 나타났다.지 않았다.l years and a new type of transfer crane has been developed. Design concepts and control methods of a new crane will be introduced in this paper.and momentum balance was applied to the fluid field of bundle. while the movement of′ individual material was taken into account. The constitutive model relating the surface force and the deformation of bundle was introduced by considering a representative prodedure that stands for the bundle movement. Then a fundamental equations system could be simplified considering a steady state of the process. On the basis of the simplified model, the simulation was performed and the results could be confirmed by the experiments under various conditions.뢰, 결속 등 다차원의 개념에 대한 심도 깊은 연구와 최근 제기되고 있는 이론의 확대도 필요하다. 마지막으로 신뢰와 결속에 영향을

Keywords

References

  1. Lee YS. The Korean herbal pharmacopoeia. Korea Food and Drug Administration. Seoul, Korea. p. 304 (2002)
  2. Han DS, Beak KH, Kim YO, Choi, KE, Kwag JS, Beak SH. Development of anticancer agents from korean medicinal plants. part 6. cytotoxic activity of the ethyl acetate soluble fraction of Lonicera Flos against human oral epitheloid carcinoma cells. Korean J. Pharmacogn. 29: 22-27 (1998)
  3. Son KH, Park JO, Chung KC, Chang HW, Kim HP, Kim JS, and Kang SS. Flavonoids from aerial parts of Lonicera Japonica. Arch. Pharmacol. Res. 15: 365 (1992)
  4. Lee SJ, Shin EJ, Son, KH, Chang HW, Kang SS, Kim HP. Antiinflammatory. activity of the major constituents of Lonicera japonica. Arch. Pharm. Res. 18: 133-135 (1995) https://doi.org/10.1007/BF02979147
  5. Chung HW, Beak SH, Chung KW, Son KH, Kim HP, Kang SS. Inactivation of phospholiphase A2 by naturally occurring biflavonoid, ochnaflavone. Biochem. Biophys. Res. Commun. 205: 843-849 (1994) https://doi.org/10.1006/bbrc.1994.2741
  6. Moon TC, Park JO, Chung KW, Son KH, Kim HP, Kang SS, Chang HW. Anti-inflammatory activity of the flavonoid components of Lonicera japonica. Yakhak Hoeji 43: 117-123 (1999)
  7. Han JT, Yoo SW, Kim J, Kang JA, Beak OH, Lim OS, Kim JP, Kim DK, Beak YH, Lee YM. Anti-inflammatory effect of Lonicera japonica in proteinase-activated receptor 2-mediated paw edema. Clin. Chem. Acta. 330: 165-171 (2003) https://doi.org/10.1016/S0009-8981(03)00017-2
  8. Kim YO, Lee JS, Park KO, Han DS, Yoo IL, Kwak CS, Beak SH. Development of antitoxic agents from Korean medicinal plants. Korean J. Toxicol. 12: 41-46 (1996)
  9. Choi BK. Scavenging effects of Lonicera japonica on Paraquat induced toxicity. Korean J. Environ. Toxicol. 15: 7-12 (2000)
  10. Park SK, Choi BG, Lee EB. Effect of Lonicera japonica flower on CCl4-induced hepatotoxicity. J. Appl. Pharmacol. 10: 32-36 (2002)
  11. Kim JW, Choi HK, Son YH, Lim JK, Lee HW, Nam KS. Chemopreventive potential of Lonicera Flos aqua-acupuncture solution. Korean J. Pharmacogn. 30: 261-268 (1999)
  12. Jung DY, Lee HY, Ha HK, Jung DY, Kang SS, Kim JS. Induction of growth hormone release by the extracts of Lonicera japonica Thunb. Korean J. Pharmacogn. 34: 256-262 (2003)
  13. Rizvi SSH, Benado AL, Zollweg JA, Daniels JA. Supercritical fluid extraction: fundamental principles and modeling methods. Food Technol. 40: 55-56 (1986)
  14. Chester TL, Pinhston JD, Rynie DE. Supercritical fluid chromatography and extraction. Anal. Chem. 68: 478-514 (1996)
  15. Palmer MV, Ting SST. Applications for supercritical fluid technology in food processing. Food Chem. 52: 345-352 (1995) https://doi.org/10.1016/0308-8146(95)93280-5
  16. Rizivi SSH. Supercritical Fluid Processing of Food and Biomaterials. Trend Food Sci. Technol. 5: 406 (1994)
  17. Lang Q, Qai CM. Supercritical fluid extraction in herbal and natural product studies-a practical review. Talanta. 53: 771-782 (2001) https://doi.org/10.1016/S0039-9140(00)00557-9
  18. William KM, Dulcie AM, Mark WR. Analytical supercritical fluid extraction of natural products. Phytochem. Anal. 7: 1-15 (1996) https://doi.org/10.1002/(SICI)1099-1565(199601)7:1<1::AID-PCA275>3.0.CO;2-U
  19. Floch FL, Tena ML, Rios A, Valcarcel M. Supercritical fluid extraction of phenol compounds from olive leaves. Talanta. 46: 1123-1130 (1998) https://doi.org/10.1016/S0039-9140(97)00375-5
  20. Choi YH, Kim J, Kim YC, Yoo KP. Selectivity extraction of ephedrine frome Scutellariae Radix using mixture of $CO_2$, diethylamin and methanol. J. Chromatogr. A. 50: 187-193 (1999)
  21. Boo SJ, Byun SY. Ethanol modified supercritical $CO_2$ extraction of daidzein from soybean. Korean J. Biotechnol. Bioeng. 16: 9598 (2001)
  22. Ra YJ, Lee YW, Kim JD, Row KH. Supercritical fluid extraction of catechin compounds from green tea. Korean J. Biotechnol. Bioeng. 16: 327-331 (2001)
  23. Shin HW, Chun MK, Lee H. Extraction of taxol and baccatin III from needles of Taxus Cuspidata by using supercritical carbon dioxide with co-solvents. Korean J. Biotechnol. Bioeng. 11: 100-106 (1996)
  24. Stahl E, Quirin KW, Gerad D. Dens gases for Extraction and Refining. Springer-Verlag, New-York, USA. pp. 176-188 (1988)
  25. AOAC. Official Methods of Analysis of AOAC, 15th ed. Association of Official Analytical Chemists, Washington DC, USA (1990)
  26. Lin Me, Tsai MJ, Wen KC. Supercritical fluid extraction of flavonoids from Scutellariae Radix. J. Chromatogr. A. 830: 387-395(1999) https://doi.org/10.1016/S0021-9673(98)00906-6
  27. Taylor LT. Supercritical fluid extraction. John Wiley & Sons, Inc. New York, USA. pp. 8-17 (1996)
  28. Jackman RL, Yada RY, Tung MA. Separation and chemical properties of antocyanins used for their qualitative and quantitative analysis. J. Food Biochem. 11: 279-308 (1987) https://doi.org/10.1111/j.1745-4514.1987.tb00128.x
  29. Yoo MA, Chung HK, Kang MH. Optimal extract methods of antioxidant compounds from coat of grape dreg. Korean J. Food Sci. Technol. 36: 134-140 (2004)
  30. Kim JY, Yoo LP. Effects of basic modifiers on SFE efficiencies of ephedrine derivatives from plant matrix. Korean J. Chem. Eng. 17: 672-677 (2000) https://doi.org/10.1007/BF02699116
  31. Luque de Cadtro MD, Tena MT. Strategies for supercritical fluid extraction of polar and ionic compounds. Trac-Trend Anal. Chem. 15: 32-37 (1996)
  32. Kim RS, Kim BY, Lee SY, Kim WS, Lee EK, Ryu JR, Lim GB. Extraction of glycyrrhizic acid from licorice using supercritical carbon dioxide/aqueous ethanol. Korean J. Biotechnol. Bioeng. 18: 347-351 (2003)
  33. Suh JR, Cho BK, Byun SY, Kim KH. Studies on the supercritical fluid extraction of taxo1 from yew tree. Korean. J. Biotechnol. Bioeng. 11: 71-76 (1996)
  34. Yoo BS, Lee RJ, Ko SR, Yang DC, Byun SY. Studies on the extraction of polyacethylene from korean ginseng using supercritical carbon dioxide. Korean. J. Biotechnol. Bioeng. 18: 347-351(2003)