Effects of Fermented Milk Intake on Hepatic Antioxidative Systems in Alcohol treated Rats

알코올 투여한 쥐에서 발효유의 섭취가 간조직 내 항산화 체계에 미치는 영향

  • Ahn, Young-Tae (Research and Development Center, Korea Yakult Co., LTD.) ;
  • Bae, Jin-Seong (Research and Development Center, Korea Yakult Co., LTD.) ;
  • Kim, Yong-Hee (Research and Development Center, Korea Yakult Co., LTD.) ;
  • Lim, Kwang-Sei (Research and Development Center, Korea Yakult Co., LTD.) ;
  • Huh, Chul-Sung (Research and Development Center, Korea Yakult Co., LTD.)
  • 안영태 ((주)한국야쿠르트 중앙연구소) ;
  • 배진성 ((주)한국야쿠르트 중앙연구소) ;
  • 김용희 ((주)한국야쿠르트 중앙연구소) ;
  • 임광세 ((주)한국야쿠르트 중앙연구소) ;
  • 허철성 ((주)한국야쿠르트 중앙연구소)
  • Published : 2005.08.31

Abstract

Effects of fermented milk, $Kupffer's^{\circledR}$, intake on hepatic antioxidative systems were investigated in rats fed ethanol (3 g/kg B.W.) for 2 weeks. Serum AST and ALT were $88.7{\pm}6.5\;and\;41.2{\pm}4.1IU/L$ in control group, $114.6{\pm}7.1\;and\;64.7{\pm}3.8IU/L$ in alcohol group, and $94.0{\pm}5.5\;and\;44.7{\pm}5.3IU/L$ in fermented milk (FM) group, respectively. Fermented milk intake decreased hepatic glutathione peroxidase and superoxide dismutase activities of FM group to level of control group (p<0.05). Glutathione S-transferase activity of fermented milk group increased by 122% compared to control group. These results suggest antioxidative activities of lactic acid bacteria and ingredients in $Kupffer's^{\circledR}$ improve antioxidative system in alcohol-treated rats.

2주간 에탄올(3g/kg B.W.)을 투여한 쥐에서 항산화 기능이 있는 유산균과 소재들이 함유된 발효유 쿠퍼스^{\circledR}$ 섭취에 의한 간조직내 항산화 체계에 미치는 영향을 시험하였다. 혈청내 AST와 ALT는 $88.7{\pm}6.5$$41.2{\pm}4.1$(대조군), $l14.6{\pm}7.1$$64.7{\pm}3.8$(알코올군), 그리고 $94.0{\pm}5.5$$44.7{\pm}5.3\;IU/L$(발효유근)으로 에탄올에 의해 유도되는 간수치의 증가가 발효유 섭취에 의해 유의적으로 감소되는 것으로 나타났다(p<0.05). GSH-Px와 SOD 활성은 에탄을 투여에 의해 증가하였으나, 발효유 섭취에 의해 대조군 수준으로 감소하였고(p<0.05), GST 활성은 발효유군에서 122%로 증가하였다. ADH 활성은 알코올군과 발효유군 모두에서 증가하는 것으로 나타났으며, 발효유군에서 더 크게 나타났다(p<0.05). 지질내 과산화물은 에탄을 투여에 의해 증가하였으며, 역시 발효유 섭취에 의해 대조군 수준으로 감소하였다(p<0.05). 이러한 결과들은 발효유 쿠퍼스^{\circledR}$에 함유되어 있는 항산화 유산균과 다양한 항산화물질에 의한 것으로 판단되며, 이러한 발효유는 체내 항산화 손상을 낮추어 주며, 간기능을 개선하는데 도움을 줄 것으로 판단된다.

Keywords

References

  1. Halliwell B, Gutteridge JMC. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219: 1-4 (1984) https://doi.org/10.1042/bj2190001
  2. Seo JS. Alcohol metabolism and nutritional effects. Food Ind. Nutr. 4:13-19 (1999)
  3. Liber CS. Hepatic, metabolic and toxic effects of ethanol. Alcohol Clin. Exp. Res. 15: 573-592 (1991) https://doi.org/10.1111/j.1530-0277.1991.tb00563.x
  4. Trackshel GM, Maines MD. Characterization of glutathione Stransferase in rat kidney. Biochem. J. 252: 127-136 (1988) https://doi.org/10.1042/bj2520127
  5. Simic MG. Mechanisms of inhibition of free-radical processed in mutagenesis and carcinogensis. Mutat. Res. 202: 377-386 (1988) https://doi.org/10.1016/0027-5107(88)90199-6
  6. Lin MY, Yen CL. Inhibition of lipid peroxidation by Lactobacillus acidophilus and Bifidobacterium longum. J. Agric. Food Chem. 47: 3661-3664 (1999) https://doi.org/10.1021/jf981235l
  7. Ito M, Ohishi K, Yoshida Y, Yokoi W, Sawada H. Antioxidative effects of lactic acid bacteria on the colonic mucosa of iron-overloaded mice. J. Agric. Food Chem. 51: 4456-4460 (2003) https://doi.org/10.1021/jf0261957
  8. Nishino T, Shibahars-Sonc H, Kikuchi-Hayakawa H, Ishikawa F. Transit of radical scavenging activity of milk products prepared by Maillard reaction and Lactobacillus easel strain Shirota fermentation through the hamster intestine. J. Dairy Sci. 83: 915-922 (2000) https://doi.org/10.3168/jds.S0022-0302(00)74954-X
  9. Lin MY, Yen CL. Antioxidative ability of lactic acid bacteria. J. Agric. Food Chem. 47: 1460-1466 (1999) https://doi.org/10.1021/jf981149l
  10. Hayase F, Hirashima, S, Okamaoto G, Kato H. Scavenging of active oxygens by melanoidins. Agric. Biol. Chem. 53: 3383-3385 (1989) https://doi.org/10.1271/bbb1961.53.3383
  11. Okamoto G, Hayase F, Kato H. Scavenging of active oxygens species by glycated protein. Biosci. Biotech. Biochem. 56: 928-931 (1992) https://doi.org/10.1271/bbb.56.928
  12. Terasawa N, Murta M, Homma S. Separation of model melanoidin into components with copper chelating Sepharose 6B column chromatography and comparison of chelating activity. Agric. Biol. Chem. 55: 1507-1514 (1991) https://doi.org/10.1271/bbb1961.55.1507
  13. Yoshimura Y, lijima T, Watanabe T, Nakazawa H. Antioxidative effect of Maillard reaction products using glucose-glycine model system. J. Agric. Food Chem. 45: 4106-4109 (1997) https://doi.org/10.1021/jf9609845
  14. Kullisaar T, Songisepp E, Mikelsaar M, Zilmer K, Vihalemm T, Zilmer M. Antioxidative probiotic fermented goats' milk decreases oxidative stress-mediated atherogenicity in human subjects. Br. J. Nutr. 90: 449-456 (2003) https://doi.org/10.1079/BJN2003896
  15. Gilven A, Gilven A, Gillmez M. The effect of Kefir on the activities of GSH-Px, GST, CAT, GSH and LPO levels in carbon tetrachloride-induced mice tissues. J. Vet. Med. 50: 412-416 (2003) https://doi.org/10.1046/j.1439-0450.2003.00693.x
  16. Lawerence RA, Burk RF. Glutathione peroxidase activity in selenium deficient rat liver. Biochem. Biophys. Res. Commun. 71: 952-958 (1976) https://doi.org/10.1016/0006-291X(76)90747-6
  17. Habig WH, Pabst MJ, Jakoby WB. Glutathione-S-transferase: The first enzymatic steps in mercaptyric acid formation. J. Biol. Chem. 249: 7130-7139 (1985)
  18. Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47: 469-474 (1974) https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  19. Nosova T, Jousimies-Somer H, Jokelainen K, Heine R, Salaspuro M. Acetaldehyde production and metabolism by human indigenous and probiotic Lactobacillus and Bifidobacterium strains. Alcohol Alcohol. 35: 561-568 (2000) https://doi.org/10.1093/alcalc/35.6.561
  20. Okhwa H, Ohishi N, Yaki K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95: 35-41 (1979)
  21. Baek MW, Park JH, Seok SH, Lee HY, Kim DJ, Huh CS, Park JH. The protective effect of V-mix against hepatotoxicants in vivo (P52). In: the 21th Annual Meeting of the Japanese Society of Toxicologic Pathology. Feb 19-21, Act City Center, Hamamatu, Japan. The Japanese Society of Toxicologic Pathology, Hamamatu, Japan (2005)
  22. Han SY, Huh CS, Ahn YT, Lim KS, Baek YJ, Kim DH. Hepatoprotective effect of lactic acid bacteria, inhibitors of ${\beta}-glucuronidase$ production against intestinal microtlora. Arch. Pharmacol. Res. 28: 325-329 (2005) https://doi.org/10.1007/BF02977800
  23. Ko MS, Shin KM, Lee MY. Effects of Hijikia fusifonne ethanol extract on antioxidative enzymes in ethanol-induced hepatotoxicity ofrat liver. J. Korean Soc. Food Sci. Nutr. 31: 87-91 (2002) https://doi.org/10.3746/jkfn.2002.31.1.087
  24. Flohe L, Gunzler WA, Schock HH. Glutathione-peroxidase: a selenoenzyme. FEBS Lett. 32: 132-134 (1973) https://doi.org/10.1016/0014-5793(73)80755-0
  25. Cho SY, Jang JY, Kim MJ. Effects of Pueraria flos and radix water-extracts on levels of several serum biomarkers in ethanoltreated rats. J. Korean Soc. Food Sci. Nutr. 30: 92-96 (2001)
  26. Liu JR, Chen MJ, Lin CW. Antimutagenic and antioxidant properties of milk-kefir and soyrnilk-kefir. J. Agric. Food Chem. 53: 2467-2474 (2005) https://doi.org/10.1021/jf048934k
  27. David RM, Nerland DE. Induction of mouse liver glutathione Stransferase by ethanol. Biochem. Pharmacol. 32: 2809-2811 (1983) https://doi.org/10.1016/0006-2952(83)90096-5
  28. Yoon CG, Jeon TW, Oh MJ, Lee GH, Jeong JH. Effect of the ethanol extract of Lycium chinese on the oxygen free radical and alcohol metabolizing enzyme activities in rats. J. Korean Soc. Food Sci. Nutr. 29: 268-273 (2000)
  29. Choi OH, Yoon HJ, Kim JH. Effects of chronic alcohol feeding and 2-acetylaminotluorene treatment on microsomal cytochrome PA50 and glutathione dependent enzymes activities in rat liver. J. Korean Soc. Food Nutr. 24: 859-866(1995)
  30. Karkkainen P, Mussalo-Rauhamaa H, Poikolainen K, Lehto J. Alcohol intake correlated with serum trace elements. Alcohol Alcohol. 23: 279-282 (1988)
  31. Kim MJ, Park EM, Lee MK, Cho SY. Effect of methionine and selenium levels on alcohol metabolic enzyme system in rats. J. Korean Soc. Food Sci. Nutr. 26: 319-326 (1997)
  32. Thruman RG, Bradford B, Iimuro Y, Knecht K, Connor H, Adachi Y, Wall C, Arteel G, Releigh J, Forman D, Mason RP. Role of kupffer cells, endotoxin and free radicals in hepatotoxicity due to prolonged alcohol consumption: Studies in female and male rats. J. Nutr. 127: 903-906 (1997) https://doi.org/10.1093/jn/127.5.903S
  33. Nordmann R, Ribiere C, Rouach H. Implication of free radical mechanisms in ethanol-induced cellular injury. Free Radic. Bio. Med. 12: 219-248 (1992) https://doi.org/10.1016/0891-5849(92)90030-K
  34. Plaa GL, Witschi H. Chemicals, durgs and lipid peroxidation. Am. Rev. Toxicol. Pharmacol. 16: 125-141 (1976) https://doi.org/10.1146/annurev.pa.16.040176.001013
  35. Han SY, Huh CS, Ahn YT, Lim KS, Baek YJ, Kim DH. Hepatoprotective effect of lactic acid bacteria. J. Microbiol. Biotechnol. 15: 887-890 (2005)